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Frequency Dependent Network Equivalent for Electromagnetic Transient Studies

EFRR -E ¢
(Yong-Peel Wang - Keum-Sik Jo)

Abstract - The complexity of modern power systems often makes it impractical to model it in its entirety for
electromagnetic transient studies. Therefore areas outside the immediate area of interest must be represented by some
form of Frequency Dependent Network Equivalent (FDNE). The advantage of using z-domain fitting is that it can be
directly implemented in a digital simulation program without any loss of accuracy. Fitting in the s—domain always
requires ‘‘discretizing” a continuous system and the inherent approximations. This paper presents z-domain rational
function formulation and demonstrates the use of it for the assessment of the transient response of the Lower South
Island of New Zealand. Moreover by using a well publicized test system and providing complete information on the

developed FDNE coefficients other researchers easily benchmark their work against this.
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1. Introduction

Although time domain techniques, such as used in
EMTP and PSCAD/EMTDC packages, can accurately
perform analysis of power system transients, detailed
representation of a large complex power system will
entail a prohibitive amount of computation. Hence there is
a need to have equivalents which adequately represent
the areas outside the immediate area of interest. These
are called Frequency Dependent Network Equivalents
(FDNE) as the requirement to adequately represent the
trans.ent behaviour means it must mimic the frequency
of the
conventional

response system in represents. Therefore

equivalents based on the fundamental

frequency short circuit level are inadequate for
representing the external networks behaviour when
simulating transients, due to the presence of other
frequency components.

Early FDNEs modelled the external system by an
appropriate network of lumped R, L and C components

whose values are chosen so the equivalent network will
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have the same frequency response as the external
network. Using RLC components allows implementation in
existing transient programs with minimal change,
however it restricts the possible frequency response that
can be represented. The use of rational functions in s (or
z) domain is more general and this has been the
dominant approach in recent years. The fitting techniques
used for modelling frequency-dependent effects in
transmission lines are equally applicable to FDNEs. One
of the motivations for investigating z-domain fitting is
that it can be directly implemented in a digital simulation

program without any loss of accuracy as it is already
a discrete formulation. Fitting in the s-domain always
requires “discretizing” a continuous system and has
inherent approximations. The work of Hingorani &
Burbury[1], Abur & Singh{2-3], Gustavsen & Semlyen[4],
Angelidis & Semlyen[5], and Morched, Ottevangers &
Marti[6] are particularly noteworthy. The use of z-domain
FDNEs was reported in ref [7].

Although, as the order of the fitted model increases,
the general tendency is for the accuracy of the fit to
improve, at a certain point the algorithm will fit unstable
poles, thereby making the model useless. Parameters such
as the frequency range and weighting factors used for
fitting, influence whether unstable poles are generated.
Moreover a 3-phase FDNE can be unstable even if all

the self and mutual terms are fitted by stable rational
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functions, if the 3 X 3 matrices are not positive definite
at all frequencies. This problem has been tackled by
Gustavsen & Semlyen[9] for s-domain fitting. Most work
on FDNE has used s-domain rational function, or partial
fraction form, whereas the present work uses a rational
function in the z-domain. Ref [7] introduced the concept

of z-domain FDNE and demonstrated its use on simple .

single-phase systems (both single and two-port). A
recent contribution outlines the least squares fitting
technique and applies it to a practical test system (Lower
South Island of New Zealand)[8]. Although it used a full
3 X 3 representation (including mutual coupling), it is
clear from the response that this FDNE is not optimal.
The paper compared various FDNEs (including the use of
RLC networks) for harmonic assessment on a test system
which includes an HVDC link.

This paper demonstrates the accuracy achievable for
transient analysis of a practical system by applying the
enhanced FDNE to the Lower South Island of New
Zealand. One of the objectives of this paper is to provide
a benchmark for this type of work. The Lower South
Island was an actual system and all the input data, such
as line geometry, transformer parameters.. etc, is
available in published literature[10]. The inclusion of all
the FDNE coefficients allows the transient response of
this FDNE to be assessed easily and compared with
those generated by other methods.

2. Derivation of Frequency Response

The development of a frequency dependent network
equivalent (FDNE) requires knowledge of the frequency
response of the system to be represented. The modelling
of the frequency dependence of overhead lines and cables
is well advanced in electromagnetic transient packages,
but this is not the case with other system components;
standard models of
transformers and loads do not represent the increase in

for instance the generators,
resistance (and slight reduction in inductance) associated
with skin effect. Therefore the use of a frequency domain
program will give a frequency response closer to reality.
However, if the FDNE is developed from the frequency
response obtained from a frequency domain program its
accuracy can only be assessed by corresponding
measurements in the real system, which is not a practical
proposition. Hence for verification purposes, the approach
taken in this paper is the derivation of the frequency
response from the less accurate time domain simulation,
as this allows the complete time domain model to be
used as the benchmark. The New Zealand Lower South
Island shown in Fig. 1 is used as a test system with a
resistive load connected to the Tiwai bus and fault is

applied to phase C.
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Fig. 1 Lower south island of New Zealand test system

Three tests are performed (injecting current in one
phase at a time), with the fundamental frequency voltage
sources removed, to derive the self and mutual
impedances at each frequency. The resulting 3 X 3
impedance matrices are then inverted to provide the
admittance matrices to be fitted. The off diagonal
elements of this matrix, with negative sign, constitute the
admittances of the interconnecting branches to be fitted,
while the diagonal elements (which are the sum of all the
branch admittances connected to the node) constitute the
shunt terms (Yser) to be fitted. As the admittance matrix
is symmetrical (i.e. Y12 is equal to Yz and Y3 is equal
to Ys1) only six terms need to be fitted. Finally for the
comparison the fitted terms are inverted to derive the
impedances. A

3. Structure Of The Frequency Dependent Network
Equivalents

The three-phase system equivalent of the test system
will be of the form shown in Fig. 2, where each
frequency dependent block is represented by a rational
function.
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Fig. 2 Three-phase FDNE

2.1. Obtaining the Rational Function from Frequency
Response

Each term is represented by a rational function of the
form.
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Adding weighting factors to reduce steady-state error
yields:
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Splitting into real and imaginary components (using
g TERM = cog (BwAp) — jsin(bwAf) gives:
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The values of the a and b coefficients are determined
by setting up an over-determined system of linear
equations of the form:
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2.1. Implementation in Time Domain

From eqn. (1)
K2)= V() + (a2 '+ a2 2+ +a,z W2+
(byz '+ bz 2+ - b,2" ™i(2)

= Gequiv + IH.istory (7

Hence in discrete time:
(nd) = ap(nAf) + ayp{nit— Af) + av(nAt— 201)
+ -+ @, nht— mAD + by nAt— A (8)
+ by nrt—240) + - + b, K nAt— mAl)
l( nAt) =Gequiv . U(MAt) + IHismry

where Geqiv = @

IHismry = alv(nAt_At) + azv(nAt_ZAt)
+ -+ gy nAt— mA D + b i nAt— AP
+ bl nAt— 20D + - + b, (nAt— mAD

In eqn. (6) C and D are vectors of the negative of the
real and imaginary parts respectively, of the sample data
at each frequency. The system of linear equations is
derived by evaluating the frequency response of H(z) and
equating to the required response at each sample point.
This is solved via weighted least-squares. Two equations
result from each sample point, one for the real component
and the other for the imaginary component. A weighting
factor of 100 is applied to equations representing the
fundamental frequency so as to ensure minimal
steady -state error.

The resistance represents the instantaneous term (1/ao)
while the current source represents all the past history
an ) and voltage (b1, bz -+ bn).

The complete formulation and implementation for this

terms in current (aj, az -

approach is given in ref. [10].

The rational function forms a finely balanced system
that represents the frequency response of the system.
The positive and negative coefficients result in very
similar numbers being subtracted and hence precision is
important in the calculations. Thus a large number of
decimal places is needed.

Rounding the coefficients to fewer significant digits
can have a dramatic effect on the frequency response and
often results in the system being unstable. Fig. 3 displays
the typical fitting accuracy for the Ysan term (79 order).
Although increasing the order of the Ysan improves the
fit, some poles are unstable. The least-squares approach
always seems to give a better fit at the higher
frequencies compared to the lower, hence weighting
factors are required to counter this. The simplest is
applying a weighting for the fundamental component,
however, other frequency dependent weighting factors
have been tried.
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Fig. 3 Comparison of admittance Yselfl term

The voltage sources (magnitude and phase angle) for
all the FDNEs are set to be that of the full system under
open circuit. These values are given in Table 1.

Table 1 FDNE voltage source parameters
Voltage(Phase a Neutral)

Magnitude (kV) | Phase Angle (deg.) |
Phase A 121.599 61.16755
Phase B 121.599 -59.15545
Phase C 121.599 180.66100
R = ai II-Iisrory

I

Fig. 4 Norton representation of a rational function

4. Simulations

The simulations performed using PSCAD/EMTDC,
consist of a single-phase fault represented by a 0.001[2]
resistance. applied to phase C at 0.815[s] and removed
after 0.05[s]. The comparison of the Full system and
FDNE (using a frequency range of 5-1250[Hz] for fitting)
solutions is displayed in Fig. 5 and the coefficients used
are given in [10]. The period immediately after fault
inception (expanded in Fig. 7) is practically identical in
both cases, while slight differences are noticeable after
fault removal . The phase currents are shown in Figs. 8
-9,

Close inspection of these shows that the FDNE
equivalent mimics the full system well; however, there is
a low frequency component that causes a growing phase
lag in the voltage during the fault period. This means
that when the fault is removed there is a slight
discrepancy in the voltage between the Full and FDNE
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solutions which accounts for the slight diferences in the
transient on fault removal. This phase difference vanishes
within approximately 0.25[s] of fault removal.
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Fig. 5 Comparison of transient assessed using full
system and FDNE representation, solid—full system,
dotted-FDNE
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Fig. 6 Fault Inception, solid—full system, dotted-FDNE
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Fig. 7 Fault removal, solid—full system, dotted-FDNE

—— FDNE ||
- FULL

Curent {kA)
e ul
T
e
T
Py
o

o8t o.82 o.83 cea o.as5 o.88
Time (sec.)
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system, dotted—FDNE
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solid-full system, dotted-FDNE

(phase A and B),

To investigate the influence of the fitted frequency
range on transient performance, FDNEs were also
developed using the 5-2500[Hz] and 5-500[Hz] frequency
Also,
(whereby each block in Fig. 2 is represented by an RL
branch) based on the 50[Hz] admittance was simulated .
The RL is implemented using the appropriate rational
R—2I/At
R+2L/At"
Table 2 shows the order of the rational function that

ranges. for comparison, a Thevenin equivalent

. 1
function where a, =a, = RroI/AL and b =

was used for each term, for the various frequency
ranges.

Table 2 Rational function order for various fitting frequency

ranges
Order
Term
5-500 5-1250 5-2500

Ysei1 6 7 15
Yself2z 6 12 15
Yars 6 7 15

Y2 8 1 17

Y3 7 11 17

Yo3 8 11 17

Table 3 gives the R & L values used to model each of
the Table 4 displays the
coefficients used to implement this RL branch.

admittance terms while

Trans. KIEE. Vol. 56, No. 9, SEP. 2007

In these comparisons the fault duration was not
specified as removal occurs on the first current zero after
0.025[s] following fault application. Tables 5 to 10 give
the coefficients used in PSCAD/EMTDC simulation for

the 5-500[Hz] frequency range.

Table 4 Coefficients for rational function representing RL

Term Order
a0(=al) bl

Yot | 1.2705353612953927e-04 | -9.969909207861404%e-01
Yeerz | 1.2086071925372443e-04 | -9.9712853546340041e-01
Ysas | 1.2705353612953927e-04 | -9.969909207861404%-01
Y2 | 7.1537366252693527e-05 | -9.9720809601966065e-01
Yz | 6.3246286117103626e-05 |~9.9751517353535690e-01
Yz | 7.1534755297287628e-05 | -9.9720806584012944e-01

Table 5 Coefficients for rational function representing Ysaits

term

Order

a

b

0

3.007829492366307%-03

1.0

-1.6867157879437031e-02

5.8699942174618052e+00

3.9394334773642417e-02

1.4405484110295935e+01

-4.9025038511999172e-02

-1.8918195083417309e+01

3.4265228069600508e-02

1.4022321525318672e+01

-1.2743659396358313e-02

-5.5620099984815141e+00

DO W | DN

1.9684664251101679¢-03

9.223936711104376%-01

Table 6 Coefficients for rational function representing Yseie

term

Order

a

b

0

2.4466368842016076e-03

1.0

-1.3673558091512085e-02

-5.8774107818227614e+00

3.1809746270842362e-02

1.4441679174219205e+01

-3.9405381653974635¢-02

-1.8988979106062335e+01

2.7395429619140748e-02

1.4091654909120685¢e+01

-1.0125536046686263e-02

-5.5960216493182253e+00

Sl lwinn |-

1.5526659700345685¢-03

9.2907746088487098e-01

Table 7 Coefficients for rational function representing Yseis

Table 3 Rational function order for various fitting frequency term
ranges Order a b
Term Ohms Henries 0 3.0078294923663079e-03 1.0
Yeeir1 11.842 0.19647 1 -1.6867157879437031e-02{ -5.8699942174618052e+00
Yselr2 11.879 0.20655 2 3.9394334773642417¢-02 | 1.4405484110295935e+01
Yeelfs 11.842 0.19647 3 -4.9025038511999172¢-02| -1.891819508341730%¢+01
Yo 19514 0.34898 4 3.4265228069600508¢-02 | 1.4022321525318672e+01
Yi3 19.644 0.39479 5 -1.2743659396358313e-02 | -5.5620099984815141e+00
Yo 19.515 0.34899 6 1.9684664251101679e-03 | 9.2239367111043769e-01
MR BEA S I8 Fats olE Alad Bt 1553
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Table 8 Coefficients for
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rational
term

function representing iz

Order

a

b

0

6.6876629787707654e-03

1.0

-5.1481335355811199e-02

—7.1955469088034087e+00

1.7424585227718672e-01

2.2489101993989813e+01

-3.3855097683174190e-01

-3.9786978675039855e+01

4.1315377108245688e-01

4.3445034023350161e+01

-3.2433392314869508e-01

—2.9847753735867922e+01

1.5996468074640230e-01

1.2512802920585504e+01

-4.5324861745415362e-02

—2.8933709408255108e+00

O[] |w |

5.6491299976239055e-03

2.7671132262133130e-01

Table 9 Coefficients for

rational
term

function representing Yis

Order

a

b

1.7399872694598111e-03

1.0

1.1263856073053968e-02

-6.7774986009704321e+00

3.1262831838239538e-02

1.9725734762103109e+01

-4.8223950008405743e-02

-3.1956619989073147e+01

4.4649362195819012e-02

3.1120004223321381e+01

-2.4814410002616423e-02

1.8215063623245992e+01

7.6656127060372083e-03

5.9329131941526958e+00

N (OO | W= O

-8.2946996474582613e-01

-1.0155778304361271e-03

Table 10 Coefficients for rational

term

function representing Yz

Order

a

b

0

6.6879759169563204e-03

1.0

-5.1491829884128787e-02

-7.1943188253680557e+00

1.7424233072110848e-01

2.2480775327153474e+01

-3.3853666697027623e-01

-3.9762719625266101e+01

4.1313051174614734e-01

4.3405670023731673e+01

-3.2431375927022815e-01

-2.9809336292797784e+01

1.5995509304323929¢-01

1.2490254511167217e+01

-4.5322602381628350e-02

-2.8860022832352925e+00

O[S ||k (WD |—

5.648947079750592%-03

2.7567716462752406e-01

Fig. 10 and 11 show an expanded view of the terminal

voltage on fault application and removal. All, except the
50[Hz] based RL equivalent, give a good representation of
the full system with the main error at fault removal due
to the phase shift. Fig. 12 shows the same comparison
for current (without the RL equivalent). Careful inspection
of the current error, displayed in Fig. 13, shows that the
greater the frequency range used for the fitting, the
smaller the after  0.02[s] all
equivalents, even the 50[Hz] based RL equivalent, give
the same error. This error is due to the low frequency

initial error; however,

component causing the phase shift. Inspection of the error
in the terminal voltage is very similar to the current
error.

1554

Terminal Voltage (k)

“
& ;/
D e < s s280
RL/ *5-2500

0618 oaz

~250

" L L N
0.822 0.824 0.826 0.828

Time (sec.)

s
0814 0.818

Fig. 10 Comparison of terminal voltage for fault application

sof,

Terminal Voliage (kv)
Q

!

-3

)
T

_100’-

—160|

P g

DA N

-200 k -

-250

o872 oara o876 Se7e Xy SHea ©.888 ©.888

088
ime (sec.)

Fig. 11 Comparison of terminal voltage for fault removal

%/\/\/\/ N

i »/ \ m'*—*'*.

N 0.81 o8z 0.87 o8
Tima (uc )

Fig. 12 Comparison of current waveforms

There are two stability issues, the stability of the
individual rational functions and the stability of the set of
rational functions. For instance, in the 5-2500[Hz[ fitting
range, Y1z can be fitted with a stable rational function of
system of rational

order 19, however, the resulting

functions is unstable.
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5. Conclusion

The weighted least-squares fitting of a z-domain
rational function has been formulated and its application
to the development of a frequency dependent network
equivalent of a practical system has been demonstrated.
Full information of the derived FDNE has been given,
allowing the transient response of this FDNE to be easily
assessed and compared to other FDNEs developed for the
same test system.

The effect of frequency range used to develop the
FDNE has been shown and compared to an RL
equivalent based on fundamental frequency information..
Although the frequency range determines the error in the
first cycle after a disturbance, after this period the phase
shift from a low frequency component dominates. All the
equivalents give the same error after 0.04[s]. There is a
need to improve the fit below 50[Hz] in order to remove
this phase shift.
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