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Influence Analysis of Constrained Regression Models

Myung Geun Kim"

Abstract

Cook’s distance is generalized to the multiple linear regression with lin-
ear constraints on regression coefficients. It is used for identifying influential
observations in constrained regression models. A numerical example is pro-
vided for illustration.
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1. Introduction

Diagnostic methods for the usual regression models have been suggested by
many authors and some of them can be found in Cook and Weisberg (1982),
Chatterjee and Hadi (1986), and Barnett and Lewis (1994). Constrained regres-
sions are used widely in the field of econometrics, for example in the estimation
of Cobb-Douglas production functions (Chipman and Rao, 1964). However, very
few works have been done for constrained regression. Paula (1993, 1999) consid-
ered influence analysis of inequality-constrained models and Kim (2003) suggested
a local influence method of detecting outliers.

Cook’s distance for the usual regression models has been used for identifying
influential observations that have a great effect on the estimates of regression
coefficients (Cook, 1977; Cook and Weisberg, 1982) and it has been generalized
to various statistical models, for example to structural equation models (Lee and
Wang, 1996). However, no method of detecting influential observations based on
Cook-type distance is available for constrained regression models. The counter-
parts of some diagnostic statistics, such as Andrews-Pregibon statistic, variance
ratio, etc, suggested in unconstrained regression are not available in constrained
regression.
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In this work we will suggest a diagnostic method based on Cook’s distances
for constrained regression. In Section 2 some results for constrained regression
are reviewed. In Section 3 Cook’s distance is generalized to constrained regression
and the generalized Cook’s distance is derived. In Section 4 a numerical example
is provided for illustration. In Section 5 concluding remarks are made.

2. Preliminaries for Constrained Regression

In this section we will review some results for the multiple linear regression
with linear constraints on regression coefficients.
We consider the following constrained regression

y=XpB+e
with
AB=c,
where y is an n by 1 vector of response variables, X = (z1,...,2,)7T is an
n by p matrix of fixed independent variables, 8 = (0o, ... ,ﬂp_l)T isapbyl
vector of unknown regression parameters, € = (e1,...,e,)7 is an n by 1 vector

of unobservable errors, A is a known ¢ by p (¢ < p) matrix of rank ¢, and c is a
known ¢ by 1 vector. Further, we assume that the unobservable errors ¢, (r =
1,...,n) are independent and identically distributed as a normal distribution
with mean zero and unknown variance o2.

The least squares estimator of 3 is
B=p- (XTX) 1 ATIAXTX) 1 AT]TH(AB — <),

where 8 = (XTX) 1XTy. The residual vector for constrained regression is
written as e = (e1,...,en)? =y — X 3. Similarly, we let é = (&1,...,6,)T =
y — X B for unconstrained regression. Denoting the hat matrix by H = (iz”) =
X(XTX)"1XT for unconstrained regression, we define

H=(h;)=H - X(XTX) AT AXTX)1 AT A(XTX) 1 XT.

We note that H is symmetric and idempotent. Further, we put 62 = eTe/n
which is the maximum likelihood estimator of o%. More details can be found in
Chap. 4 of Seber (1977).
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3. A Generalized Cook’s Distance for Constrained Regression

It is clear that the least squares estimator ,3 is an unbiased estimator of (3.
We can easily compute the covariance matrix of 3 as

cov(B) =V,

where V = (XTX)1—(XTX)1TAT[A(XTX)1AT] 1 A(XT X)~1. Since AV
becomes a zero matrix, the covariance matrix of ﬁ is singular. Hence based on
the idea for Cook’s distance, a generalized Cook’s distance on the estimates ﬁ
for constrained regression models can be defined as

(B-Bw)TV=(B-By)

0”-2

CD; = (B~ By) [ev(B)]~ (B — By =

ignoring unimportant constant terms, where ,C:l(i) is the LSE of 3 computed with-
out the i-th case and [cov(3)] is a generalized inverse of cov(8) (for its definition,
refer to Schott, 1997). A large value of CD; indicates that the i-th case is in-
fluential in estimating (3. At present it is not easy to directly find a closed form
of a generalized inverse of V' and thus it seems difficult to directly compute the
generalized Cook’s distance CD; by finding [cov(B)]~. We will see later that
luckily this difficulty can be avoided.

In order to get a closed form of expression for the generalized Cook’s distance

CD;, first we need to compute
By =B — (XX )T ATIAX ) X )" AT] 7 (AB, — o),

where the subscript (i) indicates the removal of the i** case in computing the
corresponding quantity as in the above paragraph. We easily compute

- = EGXTX)
:3(1) - ﬂ 1- il,ii )
XTxX) 1zl (XTX)1
X7 X )t = (XTx)~L 4 ¢ et :
( (4) (z)) ( ) 1— hy

Thus we can compute

ACXT) X () AT = [AXTX) AT -
(22

where

Q, =[AXTX) AT AXTX) 'z (XTX)TTATIAXTX) T AT
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Then we easily get
(XTX ) AT X () AT)

T -1 4T )
o (XTx)—lAT[A(XTX)—lAT]—l _ (X ‘1Xz hA Qz + 1‘1‘/}1’

where
Wi= (X"X) el (XTX) T ATIAXTX) T AT
So it is easy to obtain
(XEX @) T ATIAX X ) AT (ABy — )
= (XTX)"ATAXTX) AT 1 (4B - o)

__Cih‘_ L (XTX) T ATIAXTX) AT AXTX) ey
+ dii ei(~hii — hsi) (XTX) "z,
1- hn (1 — hii)(]- — hn)
1
1—hy

(XTX)'ATQ,c -

+ W,;C,

1
1 — hy
where

di; = 2T (XTX)TAT[AXTX) 1 AT|71AB.

Using the above results, a little more computation yields

~ A 61.
B-Bw=1—7 e V.
Then the generalized Cook’s distance reduces to
CDi= — % aTVVVa = — % __oTva,
(1= hy)262" (= hy)2Eert T

whose second equality follows from the definition of a generalized inverse. From
the definition of H, we get

hi = b — 2] (XTX)TAT[AXTX) AT T AXT X)L,
Since hy; = T (XT X)x;, we have
hii = m?V:D,

Hence the generalized Cook’s distance becomes
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4. A Numerical Example

We illustrate the use of the generalized Cook’s distance CD; to identify in-
fluential observations using the body fat data (Neter et al., 1996, p. 261). This
data set consists of twenty measurements on a single response variable (y) and
three independent variables (X, X2, X3) for which the regression model can be
written as

y = Bo + 1 X1 + B2X2 + B3 X3 + error.

We consider the following linear relationship
5081 + 9985 = 0.

In order to check the adequacy of the above linear relationship for the body fat
data, we can use the usual F-test for linear hypothesis given in Chap. 4 of Seber
(1977). The value of the F-test statistic is 0.0003 and the associated p-value is
0.987. Hence it is reasonable to conclude that this linear relationship holds in
the regression model for the body fat data. Figure 4.1 shows an index plot of the
generalized Cook’s distances for the constrained regression with the above linear
relationship.

1.0

Cook's distance
06 0.8
1

04

02

Figure 4.1: An index plot of the generalized Cook’s distances
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We see from Figure 4.1 that case 1 is the most influential in estimating 3.
Case 14 is the next but its influence is not severe compared with that of case
1. We note that case 1 is also identified as an outlier using the local influence
method of detecting outliers for constrained regression models suggested by Kim
(2003).

5. Concluding Remarks

No method of detecting influential observations based on Cook-type distance
is available for constrained regression models. In Section 3 Cook’s distance was
generalized to constrained regression models, and it may yield a clue to a useful
diagnostic method of detecting influential observations for constrained regression.

References

Barnett, V. and Lewis, T. (1994). Outliers in Statistical Data. 3rd ed., John Wiley & Sons,
New York.

Chatterjee, S. and Hadi, A. S. (1986). Influential observations, high leverage points, and
outliers in linear regression (with discussions). Statistical Science, 1, 379-416.

Chipman, J. S. and Rao, M. M. (1964). The treatment of linear restrictions in regression
analysis. Econometrica, 32, 198-209.

Cook, R. D. (1977). Detection of influential observations in linear regression. Technometrics,
19, 15-18.

Cook, R. D. and Weisberg, S. (1982). Residuals and Influence in Regression. Chapman &
Hall, New York.

Kim, M. G. (2003). Detection of outliers in constrained regression. The Korean Communica-
tions in Statistics, 10, 519-524.

Lee, S. -Y. and Wang, S. J. (1996). Sensitivity analysis of structural equation models. Psy-
chometrika, 61, 93-108.

Neter, J., Kutner, M. H., Nachtsheim, C. J. and Wasserman, W. (1996). Applied Linear
Regression Models. 3rd ed., McGraw-Hill/Irwin.

Paula, G. A. (1993). Assessing local influence in restricted regression models. Computational
Statistics & Data Analysis, 16, 63-79.

Paula, G. A. (1999). Leverage in inequality-constrained regression models. The Statistician,
48, 529-538.

Schott, J. R. (1997). Matriz Analysis for statistics. John Wiley & Sons, New York.

Seber, G. A. F. (1977). Linear Regression Analysis. John Wiley & Sons, New York.

[Received January 2007, Accepted March 2007]



