DOI QR코드

DOI QR Code

Preparation and Electrochemical Behavior of MWNT and MWNT/DAAQ Nanocomposite Materials for Electrochemical Capacitor

전기화학캐패시터용 MWNT 및 MWNT/DAAQ 나노 복합체의 제조 및 전기화학적 거동

  • Kim, Hong-Il (Department of Industrial Engineering Chemistry, Chungbuk National University) ;
  • Park, Soo-Gil (Department of Industrial Engineering Chemistry, Chungbuk National University)
  • Published : 2007.08.28

Abstract

MWNT/DAAQ(1,5-diaminoanthraquinone) composites were prepared by chemical polymerization of DAAQ onto MWNT and their capacitance was evaluated by means of cyclic voltammetry in 1M $H_2SO_4$ electrolyte. The performances of such cells have been compared with pure MWNT and DAAQ based electrodes. The SEM image shows that DAAQ was coated onto MWNT during polymerization and thermal stability from th TG analysis. The highest specific capacitance values of 97F/g were observed with AC-MWNT/DAAQ composite electrode. And MWNT/DAAQ based composite electrode also showed relatively good electrochemical behaviors better than MWNT electrode in sulfuric acid electrolyte.

화학적 중합방법을 이용하여 HWNT/DAAQ를 합성하여 전기화학적 캐패시터용 전극 소재로서 전기화학적 특성을 연구하였다. XRD pattern 결과에서 MWNT/DAAQ의 표면에 DAAQ가 oligomer 상태로 존재하는 것을 확인 하였으며, SEM image를 통해 표면을 관찰하였고, TCA를 통해 열적안정성을 확인하였다. 활성탄과 MWNT/DAAQ에 기초한 전극의 용량은 1M의 $H_2SO_4$ 전해질 상에서 97F/g의 비방전용량을 확인되었으며, 또한 HWNT/DAAQ 복합 전극은 우수한 전기화학적 거동을 보이는 것을 관찰하였다.

Keywords

References

  1. B. E. Conway, Electrochemical Supercapacitors-Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum, New York (1999)
  2. S. H. Yoon, S. Lim, Y. Song, Y. Ota, W. Qiao, A. Tanaka, I. Mochida, J. Carbon, 42, 138 (2004)
  3. Q. Jiang, M. Z. Qu, G. M. Zhou, B. L. Zhang, Z .L. Yu., Materials Letters, 57, 988 (2002) https://doi.org/10.1016/S0167-577X(02)00911-4
  4. M. Morita, J. L. Qiao, N. Yoshimoto, M. Ishikawa. Electrochimica Acta, 50, 837 (2004) https://doi.org/10.1016/j.electacta.2004.02.053
  5. X. Zhang, J. Zhang, Z. Lin., Carbon, 43, 2186 (2005) https://doi.org/10.1016/j.carbon.2005.03.034
  6. S. H. Yoon, S. Lim, Y. Song, Y. Ota, W. Qiao, A. Tanaka, I. Mochida, J. Carbon, 42, 138 (2004)
  7. C. Arbizzani, M .Mastragostino and L. Meneghello, Electrochimica. Acta, 41, 21 (1996) https://doi.org/10.1016/0013-4686(95)00289-Q
  8. J. H. Park, J. M. KO, O. O. Park, J. Power Sources, 105, 20 (2002) https://doi.org/10.1016/S0378-7753(01)00915-6
  9. X. Ren, S. Gottesfeld and J. P. Ferraris, Electrochem. Soc. Proc., 95, 138 (1996)
  10. J. H. Park and O. O. Park, J. Power Sources, 111, 185 (2002) https://doi.org/10.1016/S0378-7753(02)00304-X
  11. S. Suematsu and K. Naoi, Journal of Power Sources, 97-98, 816-818 (2001) https://doi.org/10.1016/S0378-7753(01)00596-1
  12. H. I. Kim, H. J. Kim, W. K. Choi, T. Osaka and S. G. Park, KIEE International Transactions on Electrophysics and Applications, 5C(4), 171-175 (2005)
  13. J. B. Baek and L. S. Tan, Polymer, 44, 4135-4147 (2003) https://doi.org/10.1016/S0032-3861(03)00374-4
  14. D. H. Wang, J. B. Baek and L. S. Tan, Materials Science and Engineering: B, 132, 103-107 (2006) https://doi.org/10.1016/j.mseb.2006.02.039