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ONE-PARAMETER GROUPS OF BOEHMIANS

DENNIS NEMZER

ABSTRACT. The space of periodic Boehmians with A-convergence is a
complete topological algebra which is not locally convex. A family of
Boehmians {7} such that Tp is the identity and Thi4x, =T, %1, for
all real numbers A1 and A2 is called a one-parameter group of Boehmians.

We show that if {T} is strongly continuous at zero, then {T)} has an
exponential representation. We also obtain some results concerning the
infinitesimal generator for {Th}.

1. Introduction

The space of Boehmians was first introduced by J. Mikusiniski and P. Miku-
sifiski [8] as a generalization of Schwartz distributions as well as T. K. Boehme’s
regular operators. Since the early 1980’s there have been many articles by
several authors published about spaces of Boehmians; see for example [1, 2, 3,
4,5,6,9, 10, 11, 12, 13, 14, 15, 16].

It is well known that the exponential function f(t) = e® is the most general
function which is continuous at zero and satisfies f(0) = 1 and f(¢; + t2) =
f(t1)f(£2) for all real numbers ¢; and t5.

In this note we will investigate one-parameter groups of periodic Boehmians.
That is, we will study families {Th} (A € R) of Boehmians which satisfy
To = 6 and Ty, 4, = Th, * T, for all real A\; and A2, where ¢ is the identity
and “x” is convolution.

This paper is organized as follows. In Section 2, we give a brief construction
of the space of periodic Boehmians 3(I'). We also present some known results
that will be needed in the sequel. In Section 3, we study one-parameter groups
of Boehmians. We show that a one-parameter group of Boehmians which is
strongly continuous at zero has an exponential representation. We will give
sufficient conditions for an element F € G(I') to be the infinitesimal generator
of a one-parameter group. We also present some necessary conditions. In
Section 4, we show that a necessary and sufficient condition for a Boehmian to
be an infinitesimal generator for a one-parameter group is that it is a logarithm.
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2. Preliminaries

Let £(I') denote the space of all Lebesgue integrable functions on the unit
circle I'. Let C(T") denote the subspace of £(T") consisting of all complex-valued
continuous functions, and CN(I') denote the collection of sequences in C(T).
We make no distinction between a function on I' and a 2r—periodic function
on R.

A sequence {p,}5° , of nonnegative functions in C(T') is called a delta se-
quence if

() & [T en(t)dt =1,forall n € N;
(1) n(t) =0for 0 < e, < |t| < m, where €, — 0.
The collection of delta sequences will be denoted by A.
Let f,g € C(T'). The convolution of the two functions f and g is given by
1 ™
(21) (Fea)t) = o= [ 1t =o)glo)do

Let A = {(fn,on) € CN(IT) x A : fo xop = fi * @n, foralln,k € N}
(frs©n) ~ (gn,0n) if fr %05 = gi * pp, for all n,k € N. “~” is an equivalence
relation on A. The collection of equivalence classes will be denoted by B(T').
Elements of 3(T") are called Boehmians, and a typical element of 3(T") is written

Addition, multiplication, and scalar multiplication are defined in the natural
way, and G(I') with these operations is an algebra with identity § = {5"—"}

o
e
N N
(2.4) a [gﬂ - [O‘i"] , where & € C.
L(T") can be identified with a subspace of G(T) by
152

Similarly, D’(T'), the space of Schwartz distributions [18] on the unit circle,
can be identified with a subspace of 5(I').

For f € C(T'), the kth Fourier coefficient is given by

(2.5) Flk) = 51; _ﬂ fe *dt, keZ.
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Definition 2.1. For F = [%] € (I, the kth Fourier coefficient is defined
by
(2.6) F(k) = lim fn(k).

—00

The limit in the above definition is independent of the representative of F'.

Throughout the sequel, w will denote a real-valued even function defined on
the integers Z such that 0 = w(0) < w(n+m) <w(n) +w(m) for alln,m € Z
and Y 07 “752‘) < 0.

Also throughout the sequel, {s,}2° ; will denote a sequence in Z*, the set
of positive integers, satisfying the following conditions.

(i) There exists a sequence of positive integers{¢,}2 ; disjoint from {sp}3
such that Y 00 L < oo;

n=1 t,
(i) Z* = {50} U {ta}-
Theorem 2.2 (see [13]). If {£,}152 _ is a sequence of complex numbers such

that &1s, = O(e*")) as n — o0, then {€,}32 o is the sequence of Fourier
coefficients for some Boehmian.

- 00

The next theorem is a stronger version of Theorem 3.5 in [15]. Since the
proof is similar to that of Theorem 3.5, it is omitted.

Theorem 2.3. Let 6(t) be a monotone increasing function such that

/°° a(t)dtz 0.

$2
Let {\p,}52, be an increasing sequence of positive integers such that
n
lim — =D >0.
n—oo

n

Then, for each F € B(T'), iminf,_ e_‘g()‘")|ﬁ()\n)| = 0.

Definition 2.4. A sequence {F,}32; in B(I') is said to be A-convergent to
F € B(T'), denoted by A-lim,_, F,, = F, if there exists a delta sequence
{pn}32, such that (F, — F) xp, € C(T') for all n, and (F,, — F) * p, — 0
uniformly on T" as n — cc.

The space G(I') with A—convergence is an F-space [9]. That is, it is a com-
plete topological vector space in which the topology is induced by an invariant
metric.

The dual space 8'(I") of (') is nontrivial. Indeed, 3/(T") separates points
on B(I). However, G(I') is not locally convex [4].

Theorem 2.5 (see [14]). For each A € B'(I'), there exists a unique trigono-
metric polynomial p(t) = Y. ane'™ (for some m € N) such that

(2.7) A(F) = ij anF(n), for all F € B(T).

n=—m
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m

T n€™ defines a bounded linear functional on

Conversely, any p(t) = Y
B(T) wvia (2.7).

As is the case with most spaces of generalized functions, the Fourier series
for each F € 3(T') converges to F. That is,

(2.8) F=A-lim Y F(k)e™*, for each F € B(I).
k=—n
Theorem 2.6. Suppose that F,,, F € 8(T') for n € N such that
A- lim F, = F.

Then limy,—.co Fy (k) = F(k) for all k € Z.

The next theorem, which is a stronger version of Theorem 3.2 in [13], gives
a partial converse to the previous theorem.

Theorem 2.7. Suppose that {F,}52 , is a sequence of Boehmians such that

(i) there exists a Boehmian G with ﬁn(isp)) < ,@(:ﬁ:sp)) for allp,n € N;
(i) for each k, imp_oo Fp(k) = &.
Then {&x}2_ .. i the Fourier coefficients of a Boehmian F. Moreover,

A-lim F, = F.

=00

Proof. By Theorem 2.2 there exist Hy, H, € 8(I') having Fourier coefficients
as follows: Hy(%sp) =1 (p € N) and zero otherwise, and
ﬁz(:i:tp) = sup{
and zero otherwise.

Let H = G x Hy + Hs. Then H € §(I'). Moreover,

n€Nandall k € Z.
To finish the proof, apply Theorem 3.2 in [13]. O

ﬁn(itp)y ‘ne N} (peN)

ﬁn(k)[ < (ﬁ(k)' for all

3. The main results

Let {Th}, A € R, be a family of Boehmians such that
(1) T(] = (5;
(i) Tayaa, =Ty x T, for all Ay, A2 € R.
Then, {T\} is called a one-parameter group.
Remark 3.1. The space (') has zero divisors. However (i) and (ii) show that

this is not true for a one-parameter group {7 }. Indeed, {T%} is a group under
convolution.
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Example 3.2. Let F' € (') such that ﬁ(:i:sn) = O(/s,) as n — oo. For
each A € R, define Th = A-limy—oo 2po )‘kk, , where FO = § and F* =
FxFx---xF (k times). By Theorems 2.2 and 2.7, the above sequence converges

for each A.

Now, the family {T) %} of Boehmians clearly satisfies s property {i). Also, since
T an, (k) = e1HF®) = MF®AF®) = Ty (k)T (k) for all Ay, Az € R
and k € Z, the family {7} satisfies property (ii). Therefore, {7} is a one-
parameter group of Boehmians.

We will require some type of continuity condition in order to show that {75}
has an exponential representation.

Definition 3.3. A function @ : R — B(I') is continuous at Ag provided
A-limy—x, Q@A) = Q(Xo)-

If {T»} is a one-parameter group which is continuous at zero, then there
exists a unique function 7 : Z — C such that ﬁ\(k) = e ®) for all A € R and
all k € Z.

Thus,

(3.1) Th=A-lim Y " forall AeR.

k=—n

Definition 3.4. A function @ : R — G(T') is strongly continuous at Aq if

(i} for each k € Z, Qx(k) — Q\Ao(k) as A — Ap; and
(i) there exist M > 0 and 1 > 0 such that

(3:2) |Qr(sn) = Qg (Esn)] < MIA = Ao w(sn),
for all n € N and |\ — Xo| < 7.
Remark 3.5. If ) is strongly continuous at Ay, then ¢} is continuous at Ag.

Suppose that {Th} is a one-parameter group. Let

(3.3) F. =

If there exists a Boehmian F such that F = A-lim._,¢ F., then F is called the
infinitesimal generator for {T)}.

Theorem 3.6. Suppose that {T\} is a one-parameter group that is strongly
continuous at zero. Then, T\ = e, for all A\ € R, where F is the infinitesimal
generator for {Th}, i.e.,

n y\kpk
F
(3.4) Thn=A - lim E A

n—0o0

k=0

for all A € R,
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where F* = F« Fx---x F.
N —_—
k times

Proof. Since {T)} is strongly continuous at zero, there exist M > 0 and n > 0
such that

f)\(ﬂ:sk) -1

(3.5) >

< Mw(sk),

for all k € Nand 0 < |A] < . Also, for each k € Z, the mapping A\ — Tx(k)
is continuous at zero, and Ay + Ay — T, (k) - Ty, (k). Thus, for all A € R and
kez,

(3.6) Ta(k) = e,
where ay = %T\,\(k)l/\zo. Thus,

Ta(k) -1 e —1

(3.7) ; .

— ag as A — 0.

Now,
Ty -9

F=A-lim
A—0

Equations (3.5) and (3.7) imply this limit exists. Hence

N Ta(k) — 1

(3.8) F(k) = fim P21,
for all k € Z.

By (3.7) and (3.8) we see that
(3.9) F(k) = o,
for all k € Z.

Thus, (3.6) and (3.9) yield
(3.10) Ta(k) = R,
forall k € Z.

By using (3.5) and (3.8), we obtain

AP (sp)F o IAMw(sp)F i)
D s R < e
k=0 k=0

foralln,pe Nand A € R, and

n I k -
Z (AFk(f?)) L OF® as o oo
k=0 ’

forallpe Nand A € R.
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Thus, for each A € R, the sequence {ZZ:O ’\kali} is A-convergent, and

X Nk pk A ~
(Z)\If ) (n) = '™,

0
for all n € Z.
This and (3.10) give
2 \EFR
TA:ZT’ for all A € R.
k=0

g

Theorem 3.6 suggests that it may be of interest to investigate infinitesimal
generators in more detail.

Theorem 3.7. If F is the infinitesimal generator for the one-parameter group
{T>\}, then F(k) = 7(k), for all k € Z.

Proof. Since F is the infinitesimal generator for {T»}, A-limy_,o 25 exists.

Also, T\ = Ty + )\IA#, for A # 0. Thus A-limyx_oT\ = Ty and {T)} is
continuous at A = 0. Therefore, T\ = A-limp—oo Y pe_, e Fe*t X € R.
This gives f)\(k) = e ) for all k € Z and A € R. Now, A-limy_q I/\L‘s =
F implies that lim)_.q % = ﬁ(k),k € Z. However, limy_q % =
0= — 7(k), k € Z. Therefore, F(k) = 7(k), for all k € Z. O

lim)\—v()
Theorem 3.8 (Sufficient conditions). If F € 3(T') such that

ﬁ(:tsn):|

w(sn

Re

(3.11) sup{

:nEN}<oo,

then F' is the infinitesimal generator for the one-parameter group

(3.12) Ty =A - lim Z AP gikt for all X e R.
k=-n

Proof. By the hypothesis there exists an M > 0 such that

(3.13) }Re F(xs,)| < Mw(sy),n € N.

Thus, |e*F(£50)| = e ReF(Fsn) < MIReF(Esn)| < eMINw(sn)| \ € R. Therefore,

for each X € R, {e’\ﬁ (B)}2o _ . is the Fourier coefficients for some Boehmian.
Define a mapping from R into 5(T') by

"
(3.14) Ty =A-lim > ekt xeR.
n—00 P
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NOW: f)\1+/\2 (k) = e(Al—i_)\z)F(k) = e/\lF(k)e)\ZF(k) = f)\l (k)f)ﬂ (k) for )‘1’ Az €
R and k € Z. Thus, T, 1, = T), *T),, for all A, Ao € R. Also, Ty = 4. There-
fore, {T\} is a one-parameter group.

Now, by using the Mean Value Theorem separately on the real and imag-

2 sn .
inary parts of Qm—)—l, there exist constants A > 0 and 1 > 0 such that

T*(if\")_lr = eﬁ(i;n)‘l‘ < A|F(s,)|eMm () for allm € N and 0 < |A| <
7. Also, for each k, TA(’;)—I — ekf(:>_1 - ﬁ(k) as A — 0. So, by Theorems
2.2 and 2.7, A-limy_q I{\—‘é = F. That is, F is the infinitesimal generator for
{T}- O

Theorem 3.9 (Necessary conditions). Let F be the infinitesimal generator

for the one-parameter group {T»}. Suppose that 6(t) is a monotone increas-
ing function such that floo f)%dt = 00. Let {M}32, be a sequence of posi-
tive integers such that Re ﬁ(kn) > 0 (or Re F(\,) < 0) for all n € N and

limy, oo % =D >0. Then,

F(\,)

W

(3.15) lim inf

n—00

-0

Proof. Suppose that there exist M > 0 and ng € N such that lRe ﬁ()\n) >

M6(X\,), n > ng. Without loss of generality assume that Re F(\,) > 0 (for
if Re F(\) < 0, consider T_1). Now, |T\1()\n)| = |eﬁ(’\")i = eReF(\n) >
eMO(An)  for n > ng. Thus, by Theorem 2.3, the sequence {ﬁ(k‘)},@’i_oo is not
the Fourier coefficients of any Boehmian. Therefore, the proof is complete. O

By using Theorems 3.6 and 3.8, it can be shown that every element of L(T") as
well as every periodic measure is an infinitesimal generator for a one-parameter
group having a representation of the form (3.4).

Example 3.10. (i) - (ili) are examples of infinitesimal generators, while (iv)
is an example of a Boehmian that is not an infinitesimal generator.
(i) F such that F(k) =log k|, for |k| > 1.
(ii) F such that F(k) = iexp(\/]k]), k€ Z.
(iil) F = Y o7, anexp(i2™t), where {0, }22, is any sequence of complex
numbers.

(iv) F such that Fi(k) = i, for k| > 2.

4. Logarithms

In the field of Mikusiriski operators [7], the notion of a logarithm is important
in the theory as well as in the applications of differential equations. The form of
the general solution of an nt" order linear operator-valued differential equation
depends on determining whether or not the roots of the characteristic equation
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are logarithms. No general criterion is known to determine whether or not a
given operator is a logarithm.

In this section, we will show that a Boehmian F is a logarithm if and only
if F' is the infinitesimal generator for some group.

Definition 4.1. Let @ : R — §(T"). Then Q’(\g) is defined as:
iy A e @) = Q)

(A1) Q)= A lim =

Definition 4.2. Let F € 8(I'). Suppose that there exists a Boehmian-valued

function @ : R — B(I") such that Q'(\) = FxQ()) for all A € R and Q(0) = 6,
then F is called a logarithm.

(provided the limit exists).

Theorem 4.3. Let F' € B(I'). Then F is an infinitesimal generator if and
only if F' is a logarithm.

Proof. Let F be the infinitesimal generator for {T)}. Then, A—limy_, T*/\_‘S =

F. That is, Ty’ = F. Now, T,' = A-limy_x, 3op® = A-limy, T, *

[T*—Aj{—T] =Ty * A-limyoy, 2290 = Ty xTy/ = F+Ty,, Ao €R.
For the other direction, let @ : R — §(T') such that

(4.2) Q' (N =F+«Q(\), NeR

and Q(0) = 4. Since the mapping F — ﬁ(k) is continuous for each k € Z, we
obtain

d ~ ~ o~
(4.3) 5 @a(k) = F®)Qx(K), k € Z and A € R,
Thus, Qx(k) = e*F®_ This implies that Q», 1, = @, *Qy, for all A1, Ay € R.

Also, by (4.2), A-lim,_, Q():\)_‘; = F. Therefore, {Q,} is a one-parameter
group with infinitesimal generator F. This completes the proof. ]
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