ONE-PARAMETER GROUPS OF BOEHMIANS

Dennis Nemzer

ABSTRACT. The space of periodic Boehmians with Δ -convergence is a complete topological algebra which is not locally convex. A family of Boehmians $\{T_{\lambda}\}$ such that T_0 is the identity and $T_{\lambda_1+\lambda_2}=T_{\lambda_1}*T_{\lambda_2}$ for all real numbers λ_1 and λ_2 is called a one-parameter group of Boehmians.

We show that if $\{T_{\lambda}\}$ is strongly continuous at zero, then $\{T_{\lambda}\}$ has an exponential representation. We also obtain some results concerning the infinitesimal generator for $\{T_{\lambda}\}$.

1. Introduction

The space of Boehmians was first introduced by J. Mikusiński and P. Mikusiński [8] as a generalization of Schwartz distributions as well as T. K. Boehme's regular operators. Since the early 1980's there have been many articles by several authors published about spaces of Boehmians; see for example [1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16].

It is well known that the exponential function $f(t) = e^{\alpha t}$ is the most general function which is continuous at zero and satisfies f(0) = 1 and $f(t_1 + t_2) = f(t_1)f(t_2)$ for all real numbers t_1 and t_2 .

In this note we will investigate one-parameter groups of periodic Boehmians. That is, we will study families $\{T_{\lambda}\}$ $(\lambda \in \mathbb{R})$ of Boehmians which satisfy $T_0 = \delta$ and $T_{\lambda_1 + \lambda_2} = T_{\lambda_1} * T_{\lambda_2}$ for all real λ_1 and λ_2 , where δ is the identity and "*" is convolution.

This paper is organized as follows. In Section 2, we give a brief construction of the space of periodic Boehmians $\beta(\Gamma)$. We also present some known results that will be needed in the sequel. In Section 3, we study one-parameter groups of Boehmians. We show that a one-parameter group of Boehmians which is strongly continuous at zero has an exponential representation. We will give sufficient conditions for an element $F \in \beta(\Gamma)$ to be the infinitesimal generator of a one-parameter group. We also present some necessary conditions. In Section 4, we show that a necessary and sufficient condition for a Boehmian to be an infinitesimal generator for a one-parameter group is that it is a logarithm.

Received April 4, 2006.

²⁰⁰⁰ Mathematics Subject Classification. 44A40, 42A32.

Key words and phrases. infinitesimal generator, one-parameter group, periodic Boehmian.

2. Preliminaries

Let $\mathcal{L}(\Gamma)$ denote the space of all Lebesgue integrable functions on the unit circle Γ . Let $C(\Gamma)$ denote the subspace of $\mathcal{L}(\Gamma)$ consisting of all complex-valued continuous functions, and $C^{\mathbb{N}}(\Gamma)$ denote the collection of sequences in $C(\Gamma)$. We make no distinction between a function on Γ and a 2π -periodic function on \mathbb{R} .

A sequence $\{\varphi_n\}_{n=1}^{\infty}$ of nonnegative functions in $C(\Gamma)$ is called a delta se-

(i)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \varphi_n(t) dt = 1$$
, for all $n \in \mathbb{N}$;

(i)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \varphi_n(t) dt = 1$$
, for all $n \in \mathbb{N}$;
(ii) $\varphi_n(t) = 0$ for $0 < \epsilon_n < |t| < \pi$, where $\epsilon_n \to 0$.

The collection of delta sequences will be denoted by Δ .

Let $f, g \in C(\Gamma)$. The convolution of the two functions f and g is given by

(2.1)
$$(f * g)(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t - \sigma)g(\sigma)d\sigma.$$

Let $\mathbb{A} = \{(f_n, \varphi_n) \in C^{\mathbb{N}}(\Gamma) \times \Delta : f_n * \varphi_k = f_k * \varphi_n, \text{ for all } n, k \in \mathbb{N}\}.$ $(f_n, \varphi_n) \sim (g_n, \delta_n) \text{ if } f_n * \delta_k = g_k * \varphi_n, \text{ for all } n, k \in \mathbb{N}.$ "~" is an equivalence relation on A. The collection of equivalence classes will be denoted by $\beta(\Gamma)$. Elements of $\beta(\Gamma)$ are called *Boehmians*, and a typical element of $\beta(\Gamma)$ is written

as $\left[\frac{f_n}{\varphi_n}\right]$.
Addition, multiplication, and scalar multiplication are defined in the natural way, and $\beta(\Gamma)$ with these operations is an algebra with identity $\delta = \left| \frac{\varphi_n}{\varphi_n} \right|$.

(2.2)
$$\left[\frac{f_n}{\varphi_n} \right] + \left[\frac{g_n}{\delta_n} \right] = \left[\frac{f_n * \delta_n + g_n * \varphi_n}{\varphi_n * \delta_n} \right],$$

(2.3)
$$\left[\frac{f_n}{\varphi_n} \right] * \left[\frac{g_n}{\delta_n} \right] = \left[\frac{f_n * g_n}{\varphi_n * \delta_n} \right],$$

(2.4)
$$\alpha \left[\frac{f_n}{\varphi_n} \right] = \left[\frac{\alpha f_n}{\varphi_n} \right], \text{ where } \alpha \in \mathbb{C}.$$

 $\mathcal{L}(\Gamma)$ can be identified with a subspace of $\beta(\Gamma)$ by

$$f \leftrightarrow \left[\frac{f * \varphi_n}{\varphi_n}\right].$$

Similarly, $D'(\Gamma)$, the space of Schwartz distributions [18] on the unit circle, can be identified with a subspace of $\beta(\Gamma)$.

For $f \in C(\Gamma)$, the kth Fourier coefficient is given by

(2.5)
$$\widehat{f}(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-ikt}dt, \quad k \in \mathbb{Z}.$$

Definition 2.1. For $F = \begin{bmatrix} \frac{f_n}{\varphi_n} \end{bmatrix} \in \beta(\Gamma)$, the kth Fourier coefficient is defined

(2.6)
$$\widehat{F}(k) = \lim_{n \to \infty} \widehat{f}_n(k).$$

The limit in the above definition is independent of the representative of F. Throughout the sequel, ω will denote a real-valued even function defined on the integers \mathbb{Z} such that $0 = \omega(0) \leq \omega(n+m) \leq \omega(n) + \omega(m)$ for all $n, m \in \mathbb{Z}$ and $\sum_{n=1}^{\infty} \frac{\omega(n)}{n^2} < \infty$.

Also throughout the sequel, $\{s_n\}_{n=1}^{\infty}$ will denote a sequence in \mathbb{Z}^+ , the set of positive integers, satisfying the following conditions.

- (i) There exists a sequence of positive integers $\{t_n\}_{n=1}^{\infty}$ disjoint from $\{s_n\}_{n=1}^{\infty}$ such that $\sum_{n=1}^{\infty} \frac{1}{t_n} < \infty$; (ii) $\mathbb{Z}^+ = \{s_n\} \cup \{t_n\}$.

Theorem 2.2 (see [13]). If $\{\xi_n\}_{n=-\infty}^{\infty}$ is a sequence of complex numbers such that $\xi_{\pm s_n} = O(e^{\omega(s_n)})$ as $n \to \infty$, then $\{\xi_n\}_{n=-\infty}^{\infty}$ is the sequence of Fourier coefficients for some Boehmian.

The next theorem is a stronger version of Theorem 3.5 in [15]. Since the proof is similar to that of Theorem 3.5, it is omitted.

Theorem 2.3. Let $\theta(t)$ be a monotone increasing function such that

$$\int_{1}^{\infty} \frac{\theta(t)}{t^2} dt = \infty.$$

Let $\{\lambda_n\}_{n=1}^{\infty}$ be an increasing sequence of positive integers such that

$$\lim_{n \to \infty} \frac{n}{\lambda_n} = D > 0.$$

Then, for each $F \in \beta(\Gamma)$, $\liminf_{n \to \infty} e^{-\theta(\lambda_n)} |\widehat{F}(\lambda_n)| = 0$.

Definition 2.4. A sequence $\{F_n\}_{n=1}^{\infty}$ in $\beta(\Gamma)$ is said to be Δ -convergent to $F \in \beta(\Gamma)$, denoted by $\Delta - \lim_{n \to \infty} F_n = F$, if there exists a delta sequence $\{\varphi_n\}_{n=1}^{\infty}$ such that $(F_n-F)*\varphi_n\in C(\Gamma)$ for all n, and $(F_n-F)*\varphi_n\to 0$ uniformly on Γ as $n \to \infty$.

The space $\beta(\Gamma)$ with Δ -convergence is an F-space [9]. That is, it is a complete topological vector space in which the topology is induced by an invariant metric.

The dual space $\beta'(\Gamma)$ of $\beta(\Gamma)$ is nontrivial. Indeed, $\beta'(\Gamma)$ separates points on $\beta(\Gamma)$. However, $\beta(\Gamma)$ is not locally convex [4].

Theorem 2.5 (see [14]). For each $\Lambda \in \beta'(\Gamma)$, there exists a unique trigonometric polynomial $p(t) = \sum_{n=-m}^{m} \alpha_n e^{int}$ (for some $m \in \mathbb{N}$) such that

(2.7)
$$\Lambda(F) = \sum_{n=-m}^{m} \alpha_n \widehat{F}(n), \text{ for all } F \in \beta(\Gamma).$$

Conversely, any $p(t) = \sum_{n=-m}^{m} \alpha_n e^{int}$ defines a bounded linear functional on $\beta(\Gamma)$ via (2.7).

As is the case with most spaces of generalized functions, the Fourier series for each $F \in \beta(\Gamma)$ converges to F. That is,

(2.8)
$$F = \Delta - \lim_{n \to \infty} \sum_{k=-n}^{n} \widehat{F}(k) e^{ikt}, \text{ for each } F \in \beta(\Gamma).$$

Theorem 2.6. Suppose that $F_n, F \in \beta(\Gamma)$ for $n \in \mathbb{N}$ such that

$$\Delta - \lim_{n \to \infty} F_n = F.$$

Then $\lim_{n\to\infty} \widehat{F}_n(k) = \widehat{F}(k)$ for all $k \in \mathbb{Z}$.

The next theorem, which is a stronger version of Theorem 3.2 in [13], gives a partial converse to the previous theorem.

Theorem 2.7. Suppose that $\{F_n\}_{n=1}^{\infty}$ is a sequence of Boehmians such that

- (i) there exists a Boehmian G with $\left|\widehat{F}_n(\pm s_p)\right| \leq \left|\widehat{G}(\pm s_p)\right|$ for all $p, n \in \mathbb{N}$;
- (ii) for each k, $\lim_{n\to\infty} \widehat{F}_n(k) = \xi_k$.

Then $\{\xi_k\}_{k=-\infty}^{\infty}$ is the Fourier coefficients of a Boehmian F. Moreover,

$$\Delta - \lim_{n \to \infty} F_n = F$$
.

Proof. By Theorem 2.2 there exist $H_1, H_2 \in \beta(\Gamma)$ having Fourier coefficients as follows: $\widehat{H}_1(\pm s_p) = 1 \quad (p \in \mathbb{N})$ and zero otherwise, and

$$\widehat{H}_2(\pm t_p) = \sup \left\{ \left| \widehat{F}_n(\pm t_p) \right| : n \in \mathbb{N} \right\} \quad (p \in \mathbb{N})$$

and zero otherwise.

Let $H = G * H_1 + H_2$. Then $H \in \beta(\Gamma)$. Moreover, $\left| \widehat{F}_n(k) \right| \leq \left| \widehat{H}(k) \right|$ for all $n \in \mathbb{N}$ and all $k \in \mathbb{Z}$.

To finish the proof, apply Theorem 3.2 in [13].

3. The main results

Let $\{T_{\lambda}\}, \lambda \in \mathbb{R}$, be a family of Boehmians such that

- (i) $T_0 = \delta$;
- (ii) $T_{\lambda_1+\lambda_2} = T_{\lambda_1} * T_{\lambda_2}$ for all $\lambda_1, \lambda_2 \in \mathbb{R}$.

Then, $\{T_{\lambda}\}$ is called a one-parameter group.

Remark 3.1. The space $\beta(\Gamma)$ has zero divisors. However (i) and (ii) show that this is not true for a one-parameter group $\{T_{\lambda}\}$. Indeed, $\{T_{\lambda}\}$ is a group under convolution.

Example 3.2. Let $F \in \beta(\Gamma)$ such that $\widehat{F}(\pm s_n) = O(\sqrt{s_n})$ as $n \to \infty$. For each $\lambda \in \mathbb{R}$, define $T_{\lambda} = \Delta - \lim_{n \to \infty} \sum_{k=0}^{n} \frac{\lambda^k F^k}{k!}$, where $F^0 = \delta$ and $F^k = F * F * \cdots * F$ (k times). By Theorems 2.2 and 2.7, the above sequence converges for each λ .

Now, the family $\{T_{\lambda}\}$ of Boehmians clearly satisfies property (i). Also, since $\widehat{T}_{\lambda_1+\lambda_2}(k)=e^{(\lambda_1+\lambda_2)\widehat{F}(k)}=e^{\lambda_1\widehat{F}(k)}e^{\lambda_2\widehat{F}(k)}=\widehat{T}_{\lambda_1}(k)\widehat{T}_{\lambda_2}(k)$ for all $\lambda_1,\lambda_2\in\mathbb{R}$ and $k\in\mathbb{Z}$, the family $\{T_{\lambda}\}$ satisfies property (ii). Therefore, $\{T_{\lambda}\}$ is a one-parameter group of Boehmians.

We will require some type of continuity condition in order to show that $\{T_{\lambda}\}$ has an exponential representation.

Definition 3.3. A function $Q: \mathbb{R} \to \beta(\Gamma)$ is continuous at λ_0 provided $\Delta - \lim_{\lambda \to \lambda_0} Q(\lambda) = Q(\lambda_0)$.

If $\{T_{\lambda}\}$ is a one-parameter group which is continuous at zero, then there exists a unique function $\tau: \mathbb{Z} \to \mathbb{C}$ such that $\widehat{T}_{\lambda}(k) = e^{\lambda \tau(k)}$, for all $\lambda \in \mathbb{R}$ and all $k \in \mathbb{Z}$.

Thus,

(3.1)
$$T_{\lambda} = \Delta - \lim_{n \to \infty} \sum_{k=-n}^{n} e^{\lambda \tau(k)} e^{ikt} \text{ for all } \lambda \in \mathbb{R}.$$

Definition 3.4. A function $Q: \mathbb{R} \to \beta(\Gamma)$ is strongly continuous at λ_0 if

- (i) for each $k \in \mathbb{Z}$, $\widehat{Q}_{\lambda}(k) \to \widehat{Q}_{\lambda_0}(k)$ as $\lambda \to \lambda_0$; and
- (ii) there exist M > 0 and $\eta > 0$ such that

$$(3.2) |\widehat{Q}_{\lambda}(\pm s_n) - \widehat{Q}_{\lambda_0}(\pm s_n)| \le M|\lambda - \lambda_0|\omega(s_n),$$

for all $n \in \mathbb{N}$ and $|\lambda - \lambda_0| < \eta$.

Remark 3.5. If Q is strongly continuous at λ_0 , then Q is continuous at λ_0 .

Suppose that $\{T_{\lambda}\}$ is a one-parameter group. Let

(3.3)
$$F_{\epsilon} = \frac{T_{\epsilon} - \delta}{\epsilon}, \text{ for } \epsilon \neq 0.$$

If there exists a Boehmian F such that $F = \Delta - \lim_{\epsilon \to 0} F_{\epsilon}$, then F is called the *infinitesimal generator* for $\{T_{\lambda}\}$.

Theorem 3.6. Suppose that $\{T_{\lambda}\}$ is a one-parameter group that is strongly continuous at zero. Then, $T_{\lambda} = e^{\lambda F}$, for all $\lambda \in \mathbb{R}$, where F is the infinitesimal generator for $\{T_{\lambda}\}$, i.e.,

(3.4)
$$T_{\lambda} = \Delta - \lim_{n \to \infty} \sum_{k=0}^{n} \frac{\lambda^{k} F^{k}}{k!} \text{ for all } \lambda \in \mathbb{R},$$

where
$$F^k = \underbrace{F * F * \cdots * F}_{k \text{ times}}$$
.

Proof. Since $\{T_{\lambda}\}$ is strongly continuous at zero, there exist M>0 and $\eta>0$ such that

(3.5)
$$\left|\frac{\widehat{T}_{\lambda}(\pm s_k) - 1}{\lambda}\right| \leq M\omega(s_k),$$

for all $k \in \mathbb{N}$ and $0 < |\lambda| < \eta$. Also, for each $k \in \mathbb{Z}$, the mapping $\lambda \to \widehat{T}_{\lambda}(k)$ is continuous at zero, and $\lambda_1 + \lambda_2 \to \widehat{T}_{\lambda_1}(k) \cdot \widehat{T}_{\lambda_2}(k)$. Thus, for all $\lambda \in \mathbb{R}$ and $k \in \mathbb{Z}$,

$$\widehat{T}_{\lambda}(k) = e^{\lambda \alpha_k},$$

where $\alpha_k = \frac{d}{d\lambda} \widehat{T}_{\lambda}(k)|_{\lambda=0}$. Thus

(3.7)
$$\frac{\widehat{T}_{\lambda}(k) - 1}{\lambda} = \frac{e^{\lambda \alpha_k} - 1}{\lambda} \to \alpha_k \text{ as } \lambda \to 0.$$

Now,

$$F = \Delta - \lim_{\lambda \to 0} \frac{T_{\lambda} - \delta}{\lambda}.$$

Equations (3.5) and (3.7) imply this limit exists. Hence

(3.8)
$$\widehat{F}(k) = \lim_{\lambda \to 0} \frac{\widehat{T}_{\lambda}(k) - 1}{\lambda},$$

for all $k \in \mathbb{Z}$.

By (3.7) and (3.8) we see that

$$\widehat{F}(k) = \alpha_k,$$

for all $k \in \mathbb{Z}$.

Thus, (3.6) and (3.9) yield

(3.10)
$$\widehat{T}_{\lambda}(k) = e^{\lambda \widehat{F}(k)},$$

for all $k \in \mathbb{Z}$.

By using (3.5) and (3.8), we obtain

$$\sum_{k=0}^{n} \frac{|\lambda \widehat{F}(s_p)|^k}{k!} \leq \sum_{k=0}^{n} \frac{|\lambda M \omega(s_p)|^k}{k!} \leq e^{M|\lambda||\omega(s_p)|},$$

for all $n, p \in \mathbb{N}$ and $\lambda \in \mathbb{R}$, and

$$\sum_{k=0}^{n} \frac{(\lambda \widehat{F}(p))^k}{k!} \to e^{\lambda \widehat{F}(p)} \text{ as } n \to \infty,$$

for all $p \in \mathbb{N}$ and $\lambda \in \mathbb{R}$.

Thus, for each $\lambda \in \mathbb{R}$, the sequence $\left\{\sum_{k=0}^n \frac{\lambda^k F^k}{k!}\right\}$ is Δ -convergent, and

$$\left(\sum_{0}^{\infty} \frac{\lambda^k F^k}{k!}\right)^{\wedge}(n) = e^{\lambda \widehat{F}(n)},$$

for all $n \in \mathbb{Z}$.

This and (3.10) give

$$T_{\lambda} = \sum_{k=0}^{\infty} \frac{\lambda^k F^k}{k!}$$
, for all $\lambda \in \mathbb{R}$.

Theorem 3.6 suggests that it may be of interest to investigate infinitesimal generators in more detail.

Theorem 3.7. If F is the infinitesimal generator for the one-parameter group $\{T_{\lambda}\}$, then $\widehat{F}(k) = \tau(k)$, for all $k \in \mathbb{Z}$.

Proof. Since F is the infinitesimal generator for $\{T_{\lambda}\}$, $\Delta-\lim_{\lambda\to 0}\frac{T_{\lambda}-T_{0}}{\lambda}$ exists. Also, $T_{\lambda}=T_{0}+\lambda\frac{T_{\lambda}-T_{0}}{\lambda}$, for $\lambda\neq 0$. Thus $\Delta-\lim_{\lambda\to 0}T_{\lambda}=T_{0}$ and $\{T_{\lambda}\}$ is continuous at $\lambda=0$. Therefore, $T_{\lambda}=\Delta-\lim_{n\to\infty}\sum_{k=-n}^{n}e^{\lambda\tau(k)}e^{ikt}, \lambda\in\mathbb{R}$. This gives $\widehat{T}_{\lambda}(k)=e^{\lambda\tau(k)}$, for all $k\in\mathbb{Z}$ and $\lambda\in\mathbb{R}$. Now, $\Delta-\lim_{\lambda\to 0}\frac{T_{\lambda}-\delta}{\lambda}=F$ implies that $\lim_{\lambda\to 0}\frac{\widehat{T}_{\lambda}(k)-1}{\lambda}=\widehat{F}(k), k\in\mathbb{Z}$. However, $\lim_{\lambda\to 0}\frac{\widehat{T}_{\lambda}(k)-1}{\lambda}=\lim_{\lambda\to 0}\frac{e^{\lambda\tau(k)}-1}{\lambda}=\tau(k), k\in\mathbb{Z}$. Therefore, $\widehat{F}(k)=\tau(k)$, for all $k\in\mathbb{Z}$.

Theorem 3.8 (Sufficient conditions). If $F \in \beta(\Gamma)$ such that

(3.11)
$$\sup \left\{ \left| \operatorname{Re} \left[\frac{\widehat{F}(\pm s_n)}{\omega(s_n)} \right] \right| : n \in \mathbb{N} \right\} < \infty,$$

then F is the infinitesimal generator for the one-parameter group

(3.12)
$$T_{\lambda} = \Delta - \lim_{n \to \infty} \sum_{k=-n}^{n} e^{\lambda \hat{F}(k)} e^{ikt} \text{ for all } \lambda \in \mathbb{R}.$$

Proof. By the hypothesis there exists an M > 0 such that

(3.13)
$$\left| \operatorname{Re} \widehat{F}(\pm s_n) \right| \le M\omega(s_n), n \in \mathbb{N}.$$

Thus, $|e^{\lambda \widehat{F}(\pm s_n)}| = e^{\lambda \operatorname{Re} \widehat{F}(\pm s_n)} \leq e^{|\lambda||\operatorname{Re} \widehat{F}(\pm s_n)|} \leq e^{M|\lambda|\omega(s_n)}, \lambda \in \mathbb{R}$. Therefore, for each $\lambda \in \mathbb{R}, \{e^{\lambda \widehat{F}(k)}\}_{k=-\infty}^{\infty}$ is the Fourier coefficients for some Boehmian. Define a mapping from \mathbb{R} into $\beta(\Gamma)$ by

(3.14)
$$T_{\lambda} = \Delta - \lim_{n \to \infty} \sum_{k=-n}^{n} e^{\lambda \widehat{F}(k)} e^{ikt}, \lambda \in \mathbb{R}.$$

Now, $\widehat{T}_{\lambda_1+\lambda_2}(k)=e^{(\lambda_1+\lambda_2)\widehat{F}(k)}=e^{\lambda_1\widehat{F}(k)}e^{\lambda_2\widehat{F}(k)}=\widehat{T}_{\lambda_1}(k)\widehat{T}_{\lambda_2}(k)$ for $\lambda_1,\lambda_2\in$ \mathbb{R} and $k \in \mathbb{Z}$. Thus, $T_{\lambda_1 + \lambda_2} = T_{\lambda_1} * T_{\lambda_2}$, for all $\lambda_1, \lambda_2 \in \mathbb{R}$. Also, $T_0 = \delta$. Therefore, $\{T_{\lambda}\}$ is a one-parameter group.

Now, by using the Mean Value Theorem separately on the real and imaginary parts of $\frac{e^{\lambda \widehat{F}(\pm s_n)}-1}{\lambda}$, there exist constants A>0 and $\eta>0$ such that $\left|\frac{\widehat{T}_{\lambda}(\pm s_n)-1}{\lambda}\right|=\left|\frac{e^{\lambda \widehat{F}(\pm s_n)}-1}{\lambda}\right|\leq A|\widehat{F}(\pm s_n)|e^{M\eta\omega(s_n)}$, for all $n\in\mathbb{N}$ and $0<|\lambda|<$ η . Also, for each k, $\frac{\widehat{T}_{\lambda}(k)-1}{\lambda} = \frac{e^{\lambda \widehat{F}(k)}-1}{\lambda} \to \widehat{F}(k)$ as $\lambda \to 0$. So, by Theorems 2.2 and 2.7, $\Delta - \lim_{\lambda \to 0} \frac{T_{\lambda} - \delta}{\lambda} = F$. That is, F is the infinitesimal generator for $\{T_{\lambda}\}.$

Theorem 3.9 (Necessary conditions). Let F be the infinitesimal generator for the one-parameter group $\{T_{\lambda}\}$. Suppose that $\theta(t)$ is a monotone increasing function such that $\int_1^\infty \frac{\theta(t)}{t^2} dt = \infty$. Let $\{\lambda_n\}_{n=1}^\infty$ be a sequence of positive integers such that Re $\widehat{F}(\lambda_n) > 0$ (or Re $\widehat{F}(\lambda_n) < 0$) for all $n \in \mathbb{N}$ and $\lim_{n\to\infty} \frac{n}{\lambda_n} = D > 0$. Then,

(3.15)
$$\liminf_{n \to \infty} \left| \operatorname{Re} \left[\frac{\widehat{F}(\lambda_n)}{\theta(\lambda_n)} \right] \right| = 0.$$

Proof. Suppose that there exist M>0 and $n_0\in\mathbb{N}$ such that $|\operatorname{Re}\widehat{F}(\lambda_n)|\geq$ $M\theta(\lambda_n), \ n \geq n_0$. Without loss of generality assume that Re $\hat{F}(\lambda_n) > 0$ (for if Re $\widehat{F}(\lambda_n) < 0$, consider T_{-1}). Now, $|\widehat{T}_1(\lambda_n)| = |e^{\widehat{F}(\lambda_n)}| = e^{\operatorname{Re}\widehat{F}(\lambda_n)} \geq$ $e^{M\theta(\lambda_n)}$, for $n \geq n_0$. Thus, by Theorem 2.3, the sequence $\{\widehat{T}_1(k)\}_{k=-\infty}^{\infty}$ is not the Fourier coefficients of any Boehmian. Therefore, the proof is complete. \Box

By using Theorems 3.6 and 3.8, it can be shown that every element of $\mathcal{L}(\Gamma)$ as well as every periodic measure is an infinitesimal generator for a one-parameter group having a representation of the form (3.4).

Example 3.10. (i) - (iii) are examples of infinitesimal generators, while (iv) is an example of a Boehmian that is not an infinitesimal generator.

- (i) F such that $\widehat{F}(k) = \log |k|$, for |k| > 1.
- (ii) F such that $\widehat{F}(k) = i \exp(\sqrt{|k|})$, $k \in \mathbb{Z}$. (iii) $F = \sum_{n=1}^{\infty} \alpha_n \exp(i2^n t)$, where $\{\alpha_n\}_{n=1}^{\infty}$ is any sequence of complex numbers.
- (iv) F such that $\widehat{F}(k) = \frac{|k|}{\log |k|}$, for $|k| \ge 2$.

4. Logarithms

In the field of Mikusiński operators [7], the notion of a logarithm is important in the theory as well as in the applications of differential equations. The form of the general solution of an n^{th} order linear operator-valued differential equation depends on determining whether or not the roots of the characteristic equation are logarithms. No general criterion is known to determine whether or not a given operator is a logarithm.

In this section, we will show that a Boehmian F is a logarithm if and only if F is the infinitesimal generator for some group.

Definition 4.1. Let $Q: \mathbb{R} \to \beta(\Gamma)$. Then $Q'(\lambda_0)$ is defined as:

(4.1)
$$Q'(\lambda_0) = \Delta - \lim_{\lambda \to \lambda_0} \frac{Q(\lambda) - Q(\lambda_0)}{\lambda - \lambda_0} \text{ (provided the limit exists)}.$$

Definition 4.2. Let $F \in \beta(\Gamma)$. Suppose that there exists a Boehmian-valued function $Q : \mathbb{R} \to \beta(\Gamma)$ such that $Q'(\lambda) = F * Q(\lambda)$ for all $\lambda \in \mathbb{R}$ and $Q(0) = \delta$, then F is called a *logarithm*.

Theorem 4.3. Let $F \in \beta(\Gamma)$. Then F is an infinitesimal generator if and only if F is a logarithm.

Proof. Let F be the infinitesimal generator for $\{T_{\lambda}\}$. Then, $\Delta - \lim_{\lambda \to 0} \frac{T_{\lambda} - \delta}{\lambda} = F$. That is, $T_{0}{}' = F$. Now, $T_{\lambda_{0}}{}' = \Delta - \lim_{\lambda \to \lambda_{0}} \frac{T_{\lambda} - T_{\lambda_{0}}}{\lambda - \lambda_{0}} = \Delta - \lim_{\lambda \to \lambda_{0}} T_{\lambda_{0}} * \left[\frac{T_{\lambda - \lambda_{0}} - T_{0}}{\lambda - \lambda_{0}}\right] = T_{\lambda_{0}} * \Delta - \lim_{\lambda \to \lambda_{0}} \frac{T_{\lambda - \lambda_{0}} - T_{0}}{\lambda - \lambda_{0}} = T_{\lambda_{0}} * T_{0}{}' = F * T_{\lambda_{0}}, \quad \lambda_{0} \in \mathbb{R}.$ For the other direction, let $Q : \mathbb{R} \to \beta(\Gamma)$ such that

$$(4.2) Q'(\lambda) = F * Q(\lambda), \ \lambda \in \mathbb{R}$$

and $Q(0) = \delta$. Since the mapping $F \to \widehat{F}(k)$ is continuous for each $k \in \mathbb{Z}$, we obtain

(4.3)
$$\frac{d}{d\lambda}\widehat{Q}_{\lambda}(k) = \widehat{F}(k)\widehat{Q}_{\lambda}(k), \ k \in \mathbb{Z} \text{ and } \lambda \in \mathbb{R}.$$

Thus, $\widehat{Q}_{\lambda}(k) = e^{\lambda \widehat{F}(k)}$. This implies that $Q_{\lambda_1 + \lambda_2} = Q_{\lambda_1} * Q_{\lambda_2}$ for all $\lambda_1, \lambda_2 \in \mathbb{R}$. Also, by (4.2), $\Delta - \lim_{\lambda \to 0} \frac{Q(\lambda) - \delta}{\lambda} = F$. Therefore, $\{Q_{\lambda}\}$ is a one-parameter group with infinitesimal generator F. This completes the proof.

References

- [1] P. K. Banerji and D. Loonker, On the Mellin transform of tempered Boehmians, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. **62** (2000), no. 4, 39–48.
- [2] J. J. Betancor, M. Linares, and J. M. R. Méndez, The Hankel transform of integrable Boehmians, Appl. Anal. 58 (1995), no. 3-4, 367-382.
- [3] ______, Ultraspherical transform of summable Boehmians, Math. Japon. 44 (1996), no. 1, 81–88.
- [4] J. Burzyk, P. Mikusiński, and D. Nemzer, Remarks on topological properties of Boehmians, Rocky Mountain J. Math. 35 (2005), no. 3, 727-740.
- [5] N. V. Kalpakam and S. Ponnusamy, Convolution transform for Boehmians, Rocky Mountain J. Math. 33 (2003), no. 4, 1353-1378.
- [6] V. Karunakaran and N. V. Kalpakam, Boehmians representing measures, Houston J. Math. 26 (2000), no. 2, 377–386.
- [7] J. Mikusiński and T. K. Boehme, Operational calculus. Vol. II, International Series of Monographs in Pure and Applied Mathematics, 110. Pergamon Press, Oxford; PWN— Polish Scientific Publishers, Warsaw, 1987.

- [8] J. Mikusiński and P. Mikusiński, Quotients de suites et leurs applications dans l'analyse fonctionnelle, C. R. Acad. Sci. Paris Ser. I Math. 293 (1981), no. 9, 463–464.
- [9] P. Mikusiński, Convergence of Boehmians, Japan. J. Math. (N.S.) 9 (1983), no. 1, 159– 179.
- [10] _____, On harmonic Boehmians, Proc. Amer. Math. Soc. 106 (1989), no. 2, 447-449.
- [11] _____, Tempered Boehmians and ultradistributions, Proc. Amer. Math. Soc. 123 (1995), no. 3, 813-817.
- [12] P. Mikusiński and A. Zayed, The Radon transform of Boehmians, Proc. Amer. Math. Soc. 118 (1993), no. 2, 561-570.
- [13] D. Nemzer, Periodic Boehmians. II, Bull. Austral. Math. Soc. 44 (1991), no. 2, 271-278.
- [14] _____, The dual space of $\beta(\Gamma)$, Internat. J. Math. Math. Sci. 20 (1997), no. 1, 111–114.
- [15] _____, Generalized functions and an extended gap theorem, Indian J. Pure Appl. Math. **35** (2004), no. 1, 43–49.
- [16] ______, Lacunary Boehmians, Integral Transforms Spec. Funct. 16 (2005), no. 5-6, 451-459.
- [17] W. Rudin, Functional analysis, Second edition. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, 1991.
- [18] L. Schwartz, Theorie des distributions, Publications de l'Institut de Mathematique de l'Universite de Strasbourg, No. IX-X. Nouvelle edition, entierement corrigee, refondue et augmentee. Hermann, Paris, 1966.

DEPARTMENT OF MATHEMATICS
CALIFORNIA STATE UNIVERSITY, STANISLAUS
TURLOCK, CA 95382, USA

E-mail address: jclarke@csustan.edu