DOI QR코드

DOI QR Code

WEIGHTED COMPOSITION OPERATORS BETWEEN BERGMAN AND BLOCH SPACES

  • Sharma, Ajay K. (SCHOOL OF APPLIED PHYSICS AND MATHEMATICS SHRI MATA VAISHNO DEVI UNIVERSITY) ;
  • Kumari, Rekha (DEPARTMENT OF MATHEMATICS UNIVERSITY OF JAMMU)
  • Published : 2007.07.31

Abstract

In this paper, we characterize the boundedness and compactness of weighted composition operators ${\psi}C{\varphi}f=\psi(f^{\circ}\varphi)$ acting between Bergman and Bloch spaces of holomorphic functions on the open unit disk D.

Keywords

References

  1. K. R. M. Attele, Multipliers of composition operators, Tokyo J. Math. 15 (1992), 185-198 https://doi.org/10.3836/tjm/1270130260
  2. S. J. Axler, Zero multipliers of Bergman spaces, Canad. Math. Bull. 28 (1985), 237-242 https://doi.org/10.4153/CMB-1985-029-1
  3. Z. Cuckovic and R. Zhao, Weighted composition operators on the Bergman space, J. London Math. Soc. 70 (2004), 499-511 https://doi.org/10.1112/S0024610704005605
  4. M. D. Contreras and A. G. Hernandez-Diaz, Weighted composition operators on Hardy spaces, J. Math. Anal. Appl. 263 (2001), 224-233 https://doi.org/10.1006/jmaa.2001.7610
  5. M. D. Contreras and A. G. Hernandez-Diaz, Weighted composition operators on spaces of functions with derivatiae in a Hardy space, J. Operator Theory 52 (2004), 173-184
  6. C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions, CRC Press Boca Raton, New York, 1995
  7. F. Forelli, The isometries of HP spaces, Canad. J Math. 16 (1964), 721-728 https://doi.org/10.4153/CJM-1964-068-3
  8. H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman spaces, Springer, New York-Berlin, 2000
  9. K. Hoffman, Banach spaces of analytic functions, Dover Publications, Inc., 1988
  10. H. Kamowitz, Compact operators of the form ${\upsilon}C{\varphi}$, Pacific J. Math. 80 (1979),205-211 https://doi.org/10.2140/pjm.1979.80.205
  11. V. Matache, Compact composition operators on Hardy spaces of a half-plane, Proc. Amer. Math. Soc. 127 (1999), 1483-1491 https://doi.org/10.1090/S0002-9939-99-05060-1
  12. G. Mirzakarimi and K. Seddighi, Weighted composition operators on Bergman and Dirichlet spaces, Georgian. Math. J. 4 (1997), 373-383 https://doi.org/10.1023/A:1022946629849
  13. R. K. Singh and S. D. Sharma, Composition operators on a functional Hilbert space, Bull. Austral. Math. Soc. 20 (1979), 277-284 https://doi.org/10.1017/S0004972700011084
  14. S. Ohno, K. Stroethoff, and R. Zhao, Weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math. 33 (2003), 191-215 https://doi.org/10.1216/rmjm/1181069993
  15. S. Ohno and H. Takagi, Some properties of weighted composition operators on algebras of analytic functions, J. Nonlinear Convex Anal. 2 (2001), 369-380
  16. S. Ohno and R. Zhao, Weighted composition operators on the Bloch spaces, Bull. Austral Math. Soc. 63 (2001), 177-185 https://doi.org/10.1017/S0004972700019250
  17. K. Zhu, Operator theory in function spaces, Marcel Dekker, New York, 1990

Cited by

  1. New criteria for boundedness and compactness of weighted composition operators mapping into the Bloch space vol.11, pp.1, 2013, https://doi.org/10.2478/s11533-012-0097-4