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SOME QUESTIONS ON FUZZIFICATIONS OF IDEALS IN
SUBTRACTION ALGEBRAS

Kyounag JA LEg AND CHUL HWAN PARK

ABSTRACT. In this paper, we introduce the notion of a fuzzy ideal in
subtraction algebras, and give some conditions for a fuzzy set to be a
fuzzy ideal in subtraction algebras. We also pose three questions on fuzzy
ideals of subtraction algebras.

1. Introduction

B. M. Schein [6] considered systems of the form (®;0,\), where ® is a set
of functions closed under the composition “o” of functions (and hence (®;0) is
a function semigroup) and the set theoretic subtraction “\” (and hence (®;)\)
is a subtraction algebra in the sense of [1]). He proved that every subtraction
semigroup is isomorphic to a difference semigroup of invertible functions. B.
Zelinka [7] discussed a problem proposed by B. M. Schein concerning the struc-
ture of multiplication in a subtraction semigroup. He solved the problem for
subtraction algebras of a special type, called the atomic subtraction algebras.
Y. B. Jun et al. [4] introduced the notion of ideals in subtraction algebras and
discussed characterization of ideals. In [3], Y. B. Jun and H. S. Kim established
the ideal generated by a set, and discussed related results. In this paper, we
introduce the notion of a fuzzy ideal in subtraction algebras, and give some
conditions for a fuzzy set to be a fuzzy ideal in subtraction algebras. We also
pose three questions on fuzzy ideals of subtraction algebras.

2. Preliminaries

By a subtraction algebra we mean an algebra (X;—) with a single binary

operation “—” satisfying the following conditions: for any z,y,z € X,

S2)z-(z-y)=y—-(y—1),
(83) (z-y)—z2=(x—-2)~y.
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The last identity permits us to omit parentheses in expressions of the form
(x — y) — z. The subtraction determines an order relation on X: a < b &
a—b =0, where 0 = a — a is an element that does not depend on the choice
of a € X. The ordered set (X; <) is a semi-Boolean algebra in the sense of [1],
that is, it is a meet semilattice with zero 0 in which every interval [0,a] is a
Boolean algebra with respect to the induced order. Here a Ab = a — (a — b);
the complement of an element b € [0,a] is @ — b; and if b, ¢ € [0, a], then

bve = (W' Ad)Y =a-((a—b)A(a-2c))
= a—(@a=b) - ((a-b) —(a—0))).

In a subtraction algebra, the following are true (see [4]):

(al) (z-y)-y=z -y,

(a2) z-0=zand 00—z =0,

(33) (CE—y)—.’L‘IO,

(ad) z - (z —y) <y,

(a5) (z—y)—(y—2z) =2 -y,

(@) e —(z—(z—y)) =z -y,

@7 (z-y)-(z-y) <z -z

(a8) = <y if and only if x = y — w for some w € X,

(a9) z <yimpliesz —2<y—zandz—y<z—xforall z € X,
(al0) z,y < z implies z —y =z A (2 — y),
(all) (zAy)—(xzA2) <z A{y—2).
Definition 2.1. [4] A nonempty subset A of a subtraction algebra X is called
an ideal of X, denoted by A < X, if it satisfies:

(bl a—xecAforalla € Aand z € X,

(b2) for all a,b € A, whenever a V b exists in X then aV b€ A.
Proposition 2.2. [4] A nonempty subset A of a subtraction algebra X is an
ideal of X if and only if it satisfies:

(b3) 0€ A,

(bd) Vze X)(Vye A)(z—yec A= zcA).

Proposition 2.3. [4] Let X be a subtraction algebra and let z,y € X. Ifw € X
is an upper bound for x and y, then the element
zVy=w-—((w-y) -2
is a least upper bound for x and y.
3. Fuzzy ideals

In what follows let X be a subtraction algebra unless otherwise specified.

Definition 3.1. A fuzzy set & in X is called a fuzzy ideal of X if it satisfies:
(c1) (Va,y € X) (#(x —y) = & (2)),
(2) (Vzy € X) (3aVy = #(zVy) > min{e (a), & (3)})-
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Example 3.2. Consider a subtraction algebra X = {0, 1, 2} with the following
Cayley table:

Let & be a fuzzy set in X defined by &(0) = 0.7, & (1) = 0.2, and &7 (2) = 0.5.
Then it is easy to verify that & is a fuzzy ideal of X.

We give some conditions for a fuzzy set to be a fuzzy ideal in subtraction
algebras.

Proposition 3.3. If a fuzzy set of in X satisfies
(c3) (V&,0,b € X) (#(z — ((z — a) - b)) 2 min{a/(a), #(b)}),
then o is a fuzzy ideal of X.
Proof. Let of be a fuzzy set in X satisfying (¢3). Then
dx-y) = A(z-y)-((t-y)-2)-2)
> min{(z), o (z)} = ()

by applying (a2), (a3) and (c3). Therefore (c1) is valid. Now, suppose z V y
exists for z,y € X. Putting w :=zVy, weget cVy =w— ((w—z) —y) by
Proposition 2.3. It follows from (c3) that

Az Vy) = (w-((w—=2)-y) =min{d(z), #(y)},
and so (c2) is valid. Hence & is a fuzzy ideal of X. O

Question 1. Does any fuzzy ideal of a subtraction algebra satisfy the condition

(c3)?

Proposition 3.4. Every fuzzy ideal of of X satisfies the following inequality:
(Vo € X)((0) > ().

Proof. If we take y := z in (cl), then &(0) = &(x — z) > /() for all

z€eX. O

Proposition 3.5. Let & be a fuzzy set in X such that
(k1) (Vz € X)(#(0) > #(z)),
(k2) (Vz,y,2 € X)(#(z — z) 2 min{((z — y) — 2), 7 (y)}).
Then we have the following fact that
(Va,z € X)(z < a = &(z) > oa)).
Proof. Let a,z € X be such that < a. Then
A(z) = H(z—-0) > min{F((z—a)-0),%(a)}
= min{(0),#(a)} = #(a)
by (a2), (k1) and (k2), proving the proposition. O
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Theorem 3.6. If a fuzzy set & in X satisfies (k1) and (k2), then & is a fuzzy
ideal of X.

Proof. Let & be a fuzzy set in X satisfying (k1) and (k2), and let z,y € X.
Then z —y < z by (a3). It follows from Proposition 3.5 that & (z —y) > &/ (z),
i.e., (cl) is valid. Also, we have &/(z V y) > &/(z) whenever z V y exists in X
by using Proposition 3.5, and so &/(z V y) > min{&/(z), & (y)}. Thus (c2) is
valid. Therefore & is a fuzzy ideal of X. O

Question 2. Does any fuzzy ideal of a subtraction algebra satisfy the condition
(k2)?

Theorem 3.7. If & is a fuzzy ideal of X, then
VMae[0,1)(U(;a) #0 = U(«;0) 1 X).

Proof. Suppose that & is a fuzzy ideal of X and let a € [0,1] be such that
U(#;a) #0. For z € X and a € U(#/; ), we have &/(a) > o and so &/(a —
z) > & (a) > a by (cl). Hence a —z € U(«/; ). Assume that a V b exists in
X for all a,b € U(&/; ). Using (c2), we have

& (aVb) > min{#(a), Z(b)} > a,

and thus a V b € U(«; a). Therefore U(#/;a) < X. a

Question 3. Does the converse of Theorem 3.7 hold?

Theorem 3.8. For a nonzero element w of X, let & be a fuzzy set in X
defined by

o (z) = {a if ¢ € (w),

[ otherwise,

where (w] ;= {z € X |z <w} and o, B € [0,1] with o > 3. Then & is a fuzzy
ideal of X.

Proof. Let z,y € X. If z ¢ (w)], then &/(z) = 8 < &/(xr — y). Assume that
z € (w]. Thenz—y <z < w, and so z —y € (w]. Thus ¥ (z —y) = a = F(z).
Therefore (c1) is valid. Now if z ¢ (w] or y ¢ (w], then

min{&/ (z), & (y)} = B < H(z Vy)

whenever z V y exists in X. Suppose that z,y € (w]. Then z < w and y < w,
and so z V y exists by Proposition 2.3. Since xVy = w — ((w —y) — z), it
follows from (a3) that zVy < w, i.e., zVy € (w], and hence #(zVy) = o =
min{ & (z), & (y)}. Consequently, & is a fuzzy ideal of X. O
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