참고문헌
- M. Mochizuki, 'Control of Welding Residual Stress for Ensuring Integrity Against Fatigue and Stress-Corrosion Cracking,' Nucl. Eng. Des., 237, p. 107 (2007) https://doi.org/10.1016/j.nucengdes.2006.05.006
- P. Michaleris, J. Dantzig, and D. Tortorelli, 'Minimization of Welding Residual Stress and Distortion in Large Structures,' Welding J., 78, p. 361s (1999)
- E. B. Bartlett and R. E. Uhrig, 'Nuclear Power Plant Diagnostics Using an Artificial Neural Network,' Nucl. Technol., 97, p. 272 (1992)
- H. G. Kim, S. H. Chang, and B. H. Lee, 'Optimal Fuel Loading Pattern Design Using an Artificial Neural Network and A Fuzzy Rule-Based System,' Nucl. Sci. Eng., 115, p. 152 (1993)
- K. Kavaklioglu and B. R. Upadhyaya, 'Monitoring Feedwater Flow Rate and Component Thermal Performance of Pressurized Water Reactors by Means of Artificial Neural Networks,' Nuclear Technology, 107, p. 112 (1994)
- J. W. Hines, D. J. Wrest, and R. E. Uhrig, 'Signal Validation Using an Adaptive Neural Fuzzy Inference System,' Nucl. Technology, 119, p. 181 (1997)
- P. Fantoni, S. Figedy, and A. Racz, 'A Neuro-Fuzzy Model Applied Full Range Signal Validation of PWR Nuclear Power Plant Data,' FLINS'98, Antwerpen, Belgium, Sept. 14-16, 1998
- M. G. Na and B. R. Upadhyaya, 'A Neuro-fuzzy Controller for Axial Power Distribution in Nuclear Reactors,' IEEE Trans. Nucl. Sci., 45, p. 59 (1998) https://doi.org/10.1109/23.659555
- M. G. Na, Dong Won Jung, Sun Ho Shin, Kibog Lee, and Yoon Joon Lee, 'Estimation of the Nuclear Power Peaking Factor Using In-core Sensor Signals,' J. Korean Nucl. Soc., 36, p. 420 (2004)
- Hibbitt, Karlson & Sorensen, Inc., ABAQUS/Standard User's Manual, 2001
- V. Robin et al., 'Modelling of Bimetallic Welds,' Proc. Mathematical Modeling of Weld Phenomena 6, 2002
- D. E. Katsareas and A. G. Youtsos, 'Residual stress prediction in dissimilar metal weld pipe joints using finite element method,' Proc. ICRS-7, 2004
- B. Brickstad and B. L. Josefson, 'A Parametric Study of Residual Stresses in Multi-Pass Butt-Welded Stainless Steel Pipes,' Int. J. of Press. Ves. & Piping, 75, p. 11 (1998) https://doi.org/10.1016/S0308-0161(97)00117-8
- S. L. Chiu, 'Fuzzy Model Identification Based on Cluster Estimation,' J. Intell. Fuzzy Systems, 2, p. 267 (1994) https://doi.org/10.1109/91.324806
- T. Takagi and M. Sugeno, 'Fuzzy Identification of Systems and Its Applications to Modeling and Control,' IEEE Trans. Systems, Man, Cybern., SMC-1, p. 116 (1985)
- M. G. Na, Neuro-Fuzzy Control Applications in Pressurized Water Reactors: in Da Ruan (ed) Fuzzy Systems and Soft Computing in Nuclear Engineering, Springer-Verlag, Berlin Heidelberg New York, pp. 172-207 (1999)
- D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison Wesley, Reading, MA (1989)
- M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, Cambridge, MA (1996)
피인용 문헌
- Detection and Diagnostics of Loss of Coolant Accidents Using Support Vector Machines vol.55, pp.1, 2008, https://doi.org/10.1109/TNS.2007.911136
- Soft Computing Techniques in Stainless Steel Welding vol.24, pp.2, 2009, https://doi.org/10.1080/10426910802612338
- Modelling and long-term simulation of a heat recovery steam generator vol.19, pp.2, 2013, https://doi.org/10.1080/13873954.2012.698623
- Residual stress field analysis of Al/steel butt joint using laser welding–brazing vol.33, pp.17, 2017, https://doi.org/10.1080/02670836.2017.1343760