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Abstract

The computational discovery of transcription factor binding site is one of the important tools in the genetic and genomic analysis.
Rough prediction of gene regulation network and finding possible co-regulated genes are typical applications of the techmique.
Counfless motif-discovery algorithms have been proposed for the past vears. However, there is no dominant algorithm yet. Each
algorithm does not give enough accuracy without extensive information. In this paper, we explore the possibility of combining
multiple algorithms for the one integrated result in order to improve the performance and the convemience of researchers.
Moreover, we apply new high order information that is reorganized from the set of basis predictions to the final prediction.
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From the beginning of the computational analysis of bio-
logical data, discovering the biologically meaningfil over-ex-
pressed pattern has been a key techmique in the field. The
patterns mean variety of functions depending on its basis. It
can be a structural motif for protein structures or a tran-
scription factor binding site for DNA sequences. The tran-
scription factor binding site is a conserved and stable pattern
found in genes that are regulated by a transcription factor,
usually a protein. Because most induction and suppression
mechanisms in gene regulation are controlled by protein’s
binding to a binding site, it is very important to identify the
site in order to understand the biological mechanism.
(D'haeseleer, 2006a)

Many algorithms with different approaches have been in-
troduced for the discovery of binding sites. They utilize vari-
ous types of evidences from the statistical analysis of se-
quence elements to the evolutionary information from orthol-
ogous genes. The ideas of such algorithms are distinctive
even if the information source is same. The most straightfor-
ward approach is an enumeration. The approach exhaustively
evaluates all the possible motifs. It sometime uses [UPAC
codes for 2- or 3-nucleotides represent a position while some
algorithms find all consensus sequences with an allowed
maximum mismatches. Another popular approach is a de-
terministic optimization. MEME (Bailey and Elkan, 1995) is
the most well-known implementation in this discipline. Tt re-
peats two steps called expectation and maximization and it
converges into a local minmimum after all. EM algorithm gen-
erates a position weight matrix (PWM) which is used for
calculating probability of specific DNA sequence being a
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motif. Gibbs sampling is another optimization approach that
uses stochastic sampling for subsequences. Starting from ran-
domly sclected sites, it focuses on the model of sample with
high probability after the number of iterations. While many
algorithms can be categorized in the three approaches men-
tioned above, there are still few altermative approaches that
have different features such as graphical optimization (Reddy
et al, 2007) and phylogenetic footprinting (Blanchette et al,
2003).

Most existing algorithms suggest a number of predicted
motifs. However, their accuracy has been quite low without
manual interpretation of an experienced computational
biologist. Experts suggest to researchers that they should try
many of different algorithms and interpret their biological
meanings (D'haeseleer, 2006b). The major role of computa-
tional prediction is to save a labor and resource in ex-
perimental works. The discovery algomthm has to suggest a
list of probable motifs without an extensive training and
work on a computer console. The problem can be resolved
by combining existing algorithms into an integrated set.
Machine learning technology has been adopted by many ap-
plications in the analysis of biological data. In this paper, we
propose a new method discovering transcription factor bind-
ing sites that proposes probable motifs based on predictions
of existing algorithms. Morcover, integrating different algo-
rithms makes high order data available such as a position
preference among the algorithms and sequences. To confirm
the usefulness of those data, we evaluate them with our own
methods.
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Methods

In this section, we outline our method which feeds data
from wvarious discovery algorithms to a learning algorithm.
Robinson er af. (2006) once described a method for the sim-
ilar purpose with taking quite different way from ours not
only in the vectorization of algorithm results but also in rep-
resenting high order data.

1. Algorithm

Performance of the combining algorithm can be maxi-
mized when the input features contain different information
cach other. We adopted few algorithms from different fea-
tures to take the advantage of orthogonality. However, we
excluded phylogenetic footprinting algorithms because they
require evolutionary information which carmot be provided in
a certain case. Finally, six well-known algorithms are chosen
to be evaluated as candidates of the prediction vector. (Table
1y

To train the learning algorithms with the sequences, we
need to annotate whether it is a binding site or not at each
residue of sequence points. Because an input vector consists
of a consistent mumber of values, we had to transform the
results from each algorithm into a value set. As every algo-
rithm gives different type of data and different number of
motifs, same numbers of transformation methods were de-
signed for the individual algorithms. Details of the methods
are described later.

Binding site annotation which serves as a correct answer
in the training was calculated from the quality of binding
value in the original experimental data because high quality
of binding affinity means that the binding site is more likely
to be close to the real motif The annotation BA is defined
as

Qij — Hg
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where 7 is a sequence, j is a position in the sequence, M,
is 1 if B4, is a binding site or 0 otherwise, Q; is a
binding quality of the site, yo and gp are an average and a
standard deviation of all binding sites in the training set,
respectively. This formula results 0 for non-binding sites
and 1 for average quality binding sites.

Each algorithm predicts with just low accuracy. Many
weak predictors with different random features may make the
integration worse. We examined correlations between algo-
rithms to select a subset that would predict with reasonable
accuracy. Table 2 shows Pearson correlation coefficients be-
tween algorithm predictions and BA4. No algorithm showed
quite low correlation coefficient to B4. We chose AlignACE,
MEME, MotifSampler and Weeder as input sources and ex-
cluded Projection and SeSiMCMC because they have low
correlation to B4 although they have relatively strong corre-
lation to MEME.

2. High Order Data

If a transcription factor binds to a gene but does not bind
to an orthologous gene, it will be very helpful to the pre-
diction because their difference is a strong evidence of bind-
ing sites. It is relatively casy to perform an additional experi-
ment that tests activity of a transcription factor for an orthol-
ogous gene. We added the prediction results from inactive
orthologous genes into the set of input vector. It will work
as a strong negative signal. We split the input vector set to
three schemes; one includes results from positive samples on-

Table 2. Pearson correlation coefficients between each

algorithms and binding site annotation (B4) in the
training set of Homo sapiens data. Relatively high
Table 1. List of evaluated existing algorithms correlations are emboldened.
Algorithm Type Reference Aleorithm  BA AA ME MS PR SS W
. . . Hughes ef al.
AlignACE Gibbs Sampling 20(;30 ¢ BA 041 060 009 017 058 .053
i Ali CE 041 015 001 001 .062 .068
MEME Deterministic Bailey and Elkan, gnA
1995 MEME 060 015 Ol 417 278 115
MotifSampler  Gibbs Sampling  Thijs ef al. 2001 MofifSampler 009 001 011 010 011 013
Projection Random Projection  Buhler, 2003 Projection  .017 001 417 .010 195 062
. . . Favorov et al. ]
SeSIMCMC  Gibbs Sampling 2005 SeSIMCMC 058 062 .278 011 .195 076
Weeder Enumerative Pavesi ef al. 2001 Weeder 053 068 .115 013 062 076

53



Bicinformatics and Biosystems 2007, Vol. 2, No. 2

Iy (“posonly™), another includes results from positive and
negative samples (“posneg™), and the last includes results
from positive samples only and positive and negative samples
together (“composite™). In this expenment, we chose se-
quences that had score ranging from 10 bit to 35 bit using
BLASTn (Altschul e al. 1990).

Some kind of motif has highly conserved distance from
the translation start site because of the physical property of
DNA structure or a transcription factor. (Vardhanabhuti ez af.
2007, Tomovic and Oakeley, 2007) If several algorithms
predict a position as a binding site in most sequences, the
position is likely a position-conserved binding site with
relatively high confidence. This is information that is not
represented in the calculated input vector because it just
cxpresses information for a sequence. The collocated
prediction score CP is defined as

Ez]l Ez] (PPasjipq‘ej)
 nSalgsSseq
P, = -

seq

where alg 1s a set of all algorithms, seq is a set of
sequences and PP,y and PC,y are 1 if the algorithm «
predicts that position j on sequence s is in a binding site
in “posonly” and “composite” predictions respectively or 0
otherwise. The Pearson correlation coefficient between BA
and CP in the training set was 0.15; it is not bad as a
weak classifier.

3. Dataset

We used TRANSFAC Pro version 11.1 (Matys et al
20006) for both of the traiming set and testing set. Gene se-
quences are retrieved from the EMBL database and binding
sites that lacks EMBL database reference are abandoned.
4,368 binding sites were survived after removing binding
sites that are too distant (>2,000nt) from translation start site
or sequences with duplicated homologs. Then sequences do
not overlap at least 300nt each other are removed for the
alignment at translation start site. The final dataset for the
experiment included 1,470 binding sites on 1,086 gene se-
quences for 163 transcription factors. One half of tran-
scription factors were used for training and the second half
were used in testing. Total sequence length was 1,643,190
and 32,636 binding site points were annotated in positive
class. BLAST was run to pick negative samples with default
options for DNA sequence.
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4. Input Vectors

All algorithms were set to find nultiple candidates of mo-
tifs with exactly 8nt long.

AlignACE: Although we ran AlignACE just with default
option, it gave many possible motifs with variable length.
We searched the given motifs in the sequences, and assigned
scores for all positions found that consist the predicted bind-
ing site.

MEME: For cach set of sequences, MEME was run to
find 25 distinct motifs. Each motif represented as a position
specific scoring matrix (PSSM) is applied to every windowed
positions on all the sequences. For ecach position, maximum
score in the window was taken to represent the position as a
value. A normalized value of -log(E-value) is multiplied to
the product of probabilities for the final score.

MotifSampler: MotifSampler found ten motifs each for set
of sequences. The score from MotifSampler was applied as
an input vector without any arbitrary calculation because they
provide just a JUPAC code and its score for replacements.

Projection Genome Toolkit: Projection motif finder was
ran to find ten different motifs. Instead of motif models, it
gives instances found from given sequences. We assigned
same scores to the positions that are predicted as a binding
site by Projection.

SeSiMCMC: Like Projection Genome Toolkit, SeSiMCMC
does not build motif models. Exactly same method was ap-
plied for SeSiIMCMC.

Weeder Weeder was run to find three distinct motifs.
Found motifs are applied to the all the possible positions in
the sequences. log(4 - differences) were calculated as score
and Weeder confidence score is multiplied. As it did in
MEME, maximum score in the window was taken to make
continuous blocks.

5. Sampling and Training

Our bare data was unbalanced dataset because most posi-
tions are not binding sites. We undersampled majority class
non-binding site positions in order to balance for training.
The majority class samples were randomly selected as many
as binding site positions. No oversampling techmque was
adopted.
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Training was performed using LIBSVM (Chang and Lin,
2001y for SVM methods and Orange (Demsar et al. 2004)
for random forest methods. SVM was trained using v-SVR
core with RBF kernel (v=0.8). Random forest was grown
with 500 trees for the training, and replacement was allowed.

Results

1. Individual Predictions

CASE 1. NF-AT2 is a human nuclear factor of activated
T-cells. (Northrop et al. 1994) TRANSFAC reports 14 bind-
ing sites in 10 gene sequences that NF-AT2 can bind. Two
binding sites on PTGS2 (COX2) have quality of 6. Many
mouse genes and interleukin-2 (I1-2) have low quality to
NF-AT2 binding. The best prediction for the transcription
factor was done by MEME but it is 7th, which mean that we
need to test at least 7 positions experimentally to confirm the
true site. Although the other algorithms did not choose the
true site early, they gave scores higher than average. As a
result, our combined method could pick the real site in a
high rank. As shown in Table 3, SVM-composite reported
the site as the third and RF-composite reported the site as
the fourth probable binding site.

CASE 2. C/EBPB is a rat liver-enriched transcriptional
activator.  (Lichtsteiner et al. 1986) According to
TRANSFAC, 55 human genes and 20 rat genes are recorded
to be active for the transcription factor. All the algorithms
failed to identify the binding site in human aleohol de-
hydrogenase 2 (ADH2). However, very adequate negative
samples were chosen thanks to rich number of sequences.
Predictions with positive samples recorded medium score for
the true binding sitz but all composite predictions said “no™
to that site. As a result, random forest could pick the site.
Nonetheless, SVM secems that it had been overfit in traimng
phase due to the numerous false negative samples.

Table 3. Number of false positives above the first true
positives in the predictions of NF-AT2 and C/EBPJ.

Algorithm NF-AT2 C/EBP3 HNF-4a
AlignACE 37 91 43
MEME 7 71 26
MotifSampler 32 92 85
Weeder 18 82 37
SVM-composite 3 76 5
RF-composite 4 1
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CASE 3. HNF-4a is an activator of liver-specific genes.
(Sladek et ai. 1990) 13 human genes are known as active to
HNF-4a. A cytochrome P450 gene (CYP2A6) that contains
many subsequences repeats that are similar to motif. Due to
the trap, many algorithms were confised where is the bind-
ing site; most of them failed to identify the true site. Our
combined methods could report the true site in the high rank
(3rd for RF, 5th for SVM) because of the high score of the
collocated prediction.
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Figure 1. Number of transcnsptiog factor(-li)indin)g sites that could be

found in each allowed number of predictions. Y axis represents
100-fold of the true prediction rate (TPR) which can be calculated as
TP / (TP + FN). Both combined methods require fewer samples to be
validated by the experiments in order to discover the motifs than the
best of existing algorithm.

2. Amlysis of Results

Ow combined methods predicted with similar or better ac-
curacy in major portion of cases, still there were few cases
that better result was got from the single algorithm. Figure 1
shows the number of discovered true binding sites varying
over the allowed mumber of false positives. It shows that
combined methods steadily outperformed the best single algo-
rithm in every size of allowed candidates. We compared the
various options of the combined algorithm (data not shown).
Random forest looks more appropriate for the combinmng on
the whole because of its discriminative power for many weak
classifiers. For the selection of samples, predictions from
composite gives slightly better result compared to the other
options.

Figure 2 shows statistical distributions of the area under
ROC curves for each algorithm. MEME and Weeder had a
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big gap between their best and worst performance. AlignACE
showed a little bit better than random distribution after all.
MotifSampler found few motifs very successfully while most
of the rest were completely failed to discover. However,
combined methods appeared superior over the existing
algorithms. The big margin between combined methods and
the others originates in the difference of their coverage. A
single algorithm tended to miss several samples completely.
Conversely, combined methods predicted reasonable candi-
dates even when they could not figure out correct binding
sites.

Discussion

We showed that the combined method of multiple discov-
ery algorithms was usefil to not only expand the coverage of
prediction but also automate the interpretation of results from
multiple algorithms. It gave fine predictions without loss of
performance of the original algorithms.

Addition to the combining, we also evaluated two new
high order information sources. One is the position con-
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Figure 2. Distnibutions of the area under ROC curves for
cach algorithm. Boxes cover 50% of cach set. Small open
circles in the boxes represent the average values.
Horizontal lines in the middle of boxes denote the
medians. Vertical lines are drawn between 5% and 95% of
each set. Diamond dots outside stand for outlier values
which are in 5% from the top or bottom. Owr combined

methods, SVM-composite and RF-composite, show superior
performance in  this statistics thanks to their wider
coverage.
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servation over a set of predictions, and the other is using
two simultaneous motif discoveries with samples that are
known as inactive for a transcription factor. Both of them
did important roles in several examples.

Ow approach has its limit on its being a combined
method. Tt cannot be improved much without introducing
new algorithm the input vector. It needs traiming for every
time genome background changes that is not a cheap
operation. Still it will be worth for certain cases because of
its wide coverage and acceptable performance even without
an expertise in the computational tools.

We avoided the information sources which require a lim-
ited condition such as phylogenetic tree or 3D structure of a
transcription factor in this research. Such information sources
can not be easily operated as a single independent algorithm.
However, combined method will easily adopt the information
as we successfully applied and merged multiple algorithms
and additional information together. Future work will include
the exploration of another information sources and the better
handling of the input vectors and classifiers.
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