Effect of Fish Number in Respiratory Chamber on Routine Oxygen Consumption of Black Porgy Acanthopagrus schlegeli Reared in Seawater or Freshwater

해수 및 담수사육 감성돔, Acanthopagrus schlegeli의 호흡측정실내 수용개체수에 따른 산소소비 비교

  • Published : 2007.05.25

Abstract

Comparison of fish number on routine oxygen consumption (OC) of black porgy (Acanthopagrus schlegeli) reared in seawater (SW) versus freshwater (FW) was performed in closed water-recirculating system containing respiratory chamber. Fish acclimated in separate indoor tanks with SW or FW were sampled as two groups (one or three of fish used, $mean\;{\pm}\;S.D.=36.4{\pm}9.8$). OC of fish reared in both SW and FW showed clear temporal rhythms, with higher values in the daytime and lower values at night, in accordance with light (09:00-21:00 h) and dark (21:00-09:00 h) phases of the diel cycle (12L:12D). The OC of the fish increased linearly with the water temperature. The OCs of black porgy reared in SW and FW at 15, 20, $25^{\circ}C$ were 140.0, 174.8, 282.3 mg $O^2{\cdot}kg^{-1}{\cdot}h^{-1}$ and 177.5, 307.8, 413.1 mg $O^2{\cdot}kg^{-1}{\cdot}h^{-1}$ for the one of fish used, and 200.5, 274.7, 339.1 mg $O^2{\cdot}kg^{-1}{\cdot}h^{-1}$ and 118.2, 188.2, 252.8 mg $O^2{\cdot}kg^{-1}{\cdot}h^{-1}$ for three of fish used, respectively. Black porgy reared in SW had higher ventilation rates than those in FW. These results indicate that black porgy reared in FW had higher OC than those in SW at the one of fish used, but the fish reared in SW had higher OC than those in FW at the three of fish used.

밀폐순환 유수식 산소소비 측정장치를 이용하여 해수 및 담수에서 사육한 감성돔, Acanthopagrus schlegeli의 개체수에 따른 산소소비 경향을 조사하였다. 해수 및 담수순화된 평균체중 36.4 g의 감성돔을 각각 1마리와 3마리 그룹으로 나누어 수온(15, 20, $25^{\circ}C$), 광주기(12L:12D)를 달리하여 실험하였다. 모든 실험조건에서 감성돔은 명기동안에 산소소비량이 많고, 암기동안에는 적은 뚜렷한 리듬을 보였으며, 수온상승과 비례하여 산소소비량이 증가하였다. 감성돔의 호흡수는 담수돔 보다 해수돔이 많았으며, 수온상승과 비례하여 증가하였다. 수온 15, 20, $25^{\circ}C$에서 개체수가 1마리일 때 해수돔의 산소소비량은 각각 140.0, 174.8, 282.3 mg $O^2{\cdot}kg^{-1}{\cdot}h^{-1}$, 담수돔은 177.5, 307.8, 413.1 mg $O^2{\cdot}kg^{-1}{\cdot}h^{-1}$로 해수돔에 비해 담수돔의 산소소비량이 많았다. 그러나 개체수가 3마리일 때는 해수돔 각각 200.5, 274.7, 339.1 mg $O^2{\cdot}kg^{-1}{\cdot}h^{-1}$, 담수돔 177.5, 307.8, 413.1 mg $O^2{\cdot}kg^{-1}{\cdot}h^{-1}$로 담수돔 보다 해수돔의 산소소비량이 많았다.

Keywords

References

  1. Chang, Y. J., J. W. Hur and H. K. Lim, 2001. Growth and survival of juvenile grey mullet (Mugil cephalus) in rearing system with recirculated seawater and freshwater. J. Aquacult., 14, 29-33
  2. Chang, Y. J., M. H. Jeong, B. H. Min, W. H. Neill, and L. P. Fontaine, 2005. Effects of photoperiod, temperature, and fish size on oxygen consumption in the black porgy (Acanthopagrus schlegeli). J. Fish. Sci. Technol., 8, 142-150 https://doi.org/10.5657/fas.2005.8.3.142
  3. Dalla Via, J., P. Villani, E. Gasteiger and H. Niederstatter, 1998. Oxygen consumption in sea bass fingerling (Dicentrarchus labrax) exposed to acute salinity and temperature changes: metabolic basis for maximum stocking density estimations. Aquaculture, 169, 303-313 https://doi.org/10.1016/S0044-8486(98)00375-5
  4. Fanta-Feofiloff, E., D. R. B. Eiras, A. T. Boscardim and M. Lacerda-Krambeck, 1986. Effect of salinity on the behavior and oxygen consumption of Mugil curema (Pisces, Mugilidae). Physiol. Behav., 36, 1029-1034 https://doi.org/10.1016/0031-9384(86)90475-0
  5. Guinea, J. and F. Fernández, 1991. The effect of SDA, temperature and daily rhythm on the energy metabolism of the mullet Mugil saliens. Aquaculture, 9, 353-364
  6. Herskin, J., 1999. Effects of social and visual contact on the oxygen consumption of juvenile sea bass measured by computerized intermittent respirometry. J. Fish Biol., 55, 1075-1085 https://doi.org/10.1111/j.1095-8649.1999.tb00742.x
  7. Hettler, W. F., 1976. Influence of temperature and salinity on routine metabolic rate and growth of young Atlantic menhaden. J. Fish Biol., 8, 55-65 https://doi.org/10.1111/j.1095-8649.1976.tb03907.x
  8. Iwama, G. K., A. Takemura and K. Takano, 1997. Oxygen consumption rates of tilapia in fresh water, sea water, and hypersaline sea water. J. Fish Biol., 51, 886-894 https://doi.org/10.1111/j.1095-8649.1997.tb01528.x
  9. Kang, J. C., P. Chin, J. S. Lee, Y. K. Shin and K. S. Cho, 2000. Effects of salinty on survival, growth and oxygen consumption rates of the juvenile gobiid, Favonigobius gymnachen. J. Kor. Fish. Soc., 33, 408-412
  10. Kim, W. S., H. T. Huh, J. H. Lee and C. H. Koh, 1998. Effects of sudden changes on salinity on endogenous rhythm of the spotted sea bass Lateolabrax sp. Mar. Biol., 131, 219-225 https://doi.org/10.1007/s002270050314
  11. Klyashtorin, L. V. and R. F. Salikzyanov, 1981. A change in metabolic rate in time and the influence of the group effect. J. Ichthyol. 20, 132-137
  12. Love, M. R., 1980. The chemical biology of fishes. Vol. II. Advances 1968-1977. Academic Press, New York, 943 pp
  13. Lucas, M. C. and I. G. Priede, 1992. Utilization of metabolic scope in relation to feeding and activity by individual and grouped zebrafish, Brachydanio rerio (Hamilton-Buchanan). J. Fish Biol., 41, 175-190 https://doi.org/10.1111/j.1095-8649.1992.tb02648.x
  14. Martin, T. J., 1990. Osmoregulatory in three species of Ambassidae (Osteichthyes: Perciformes) from estuaries in Natal. S. Afr. J. Zool., 25, 229-234 https://doi.org/10.1080/02541858.1990.11448217
  15. Min, B. H., B. K. Kim, J. W. Hur, I. C. Bang, S. K. Byun, C. Y. Choi and Y. J. Chang, 2003. Physiological reponses during freshwater acclimation of seawater-cultured black porgy (Acanthopagrus schlegeli). Kor. J. Ichthyol., 15, 265-275
  16. Morgan, J. D. and G. K. Iwama, 1991. Effects of salinity on growth, metabolism, and ion regulation in juvenile rainbow and steelhead trout (Oncorhynchus mykiss) and fall chinook salmon (Oncorhynchus tshawytscha). Can. J. Fish. Aquat. Sci., 48, 2083-2094 https://doi.org/10.1139/f91-247
  17. Morgan, J. D. and G. K. Iwama, 1998. Salinity effects on oxygen consumption, gill $Na^+$, ${K^+}$ ATPase and ion regulation in juvenile coho salmon. J. Fish Biol., 53, 1110-1119
  18. Parker, F. R., 1973. Reduced metabolic rates in fishes as a result of induced schooling. Trans. Am. Fish. Soc., 102, 125-130 https://doi.org/10.1577/1548-8659(1973)102<125:RMRIFA>2.0.CO;2
  19. Requena, A., J. Fernández-Borrás and J. Planas, 1997. The effects of a temperature rise on oxygen consumption and energy budget in gilthead sea bream. Aquacult. Internation., 5, 415-426 https://doi.org/10.1023/A:1018332727888
  20. Ross, R. M., T. W. H. Backman and K. E. Limburg, 1992. Groupsize- mediated metabolic rate reduction in American shad. Trans. Am. Fish. Soc., 121, 385-390 https://doi.org/10.1577/1548-8659(1992)121<0385:NGMRRI>2.3.CO;2
  21. Ruer, P. M., J. J. Cech, & S. I. Doroshov, 1987. Routine metabolism of the white sturgeon, Acipenser transmontanus: effect of population density and hypoxia. Aquaculture, 62, 45-52 https://doi.org/10.1016/0044-8486(87)90183-9
  22. Spencer, W.P., 1939. Diurnal activity rhythms in freshwater fishes. Ohio. T. Sci., 39, 119-132
  23. Spoor, W.A., 1946. A quantitative study of the relationship between the activity and oxygen consumption of the goldfish, and its application to the measurement of respiratory metabolism in fishes. Biol. Bull., 91, 312-325 https://doi.org/10.2307/1538108
  24. Umezawa, S. I., S. Adachi and K. Taneda, 1983. Group effect on oxygen consumption of the ayu (Plecoglossus altivelis) in relation to growth stage. Jap. J. Ichthyol., 30, 261-267