DOI QR코드

DOI QR Code

저 손실을 갖는 CBFGCPW-Microstrip 천이 구조의 해석 및 MIC 모듈 집적화에 응용

A Low Insertion Loss CBFGCPW-Microstrip Transition and Its Application to MIC Module Integration

  • Lim, Ju-Hyun (Department of Radio Science and Engineering, Chungnam National University) ;
  • Yang, Seong-Sik (Department of Radio Science and Engineering, Chungnam National University) ;
  • Yeom, Kyung-Whan (Department of Radio Science and Engineering, Chungnam National University)
  • 발행 : 2007.07.31

초록

일반적으로 MIC(Microwave Integrated Circuit) 집적 회로의 경우, 조립 및 개별 측정 그리고 수리의 용이성을 위하여 기능별로 마이크로웨이브 회로가 장착된 캐리어를 이용하여 조립되게 되는데, 캐리어 모듈간의 연결시 마이크로스트립으로 구성된 회로를 와이어 본딩으로 직접 연결할 경우, 캐리어에 의한 깊이와 간격에 따라 주파수가 높아질수록 부정합에 의한 삽입 손실은 커지게 된다. 반면 CPW의 경우 전자계가 윗면에 주로 형성되어 있어 이를 통하여 연결할 경우 캐리어 깊이의 영향을 적게 받아 낮은 삽입 손실을 가져올 수 있다. 따라서 본 논문에서 MIC 캐리어 연결시 적용 가능한 저 손실을 갖는 CBFGCPW(Conductor Backed Finite Ground CPW)-microstrip 천이 구조를 제안하고 해석하였다.

Generally, carriers on which microwave circuits are mounted are used as building blocks of MIC module for the convenience of MIC assembly and the unit module characterization. However the interconnection of the microstrip-based carriers by wire bonding causes the serious problem of mismatch and results in the higher insertion loss as frequency becomes higher. The gap and the depth between carriers are considered as the main reason of the degradation. The CPW can be the solution to cope with such problem considering its field are dominantly concentrated on the top plane. In this paper, we propose and demonstrate the CBFGCPW to microstrip transition with the low insertion loss that can be applied without causing the MIC carrier interconnection problem.

키워드

참고문헌

  1. C. P. Wen, 'Coplanar waveguide: A surface strip transmission line suitable for non-reciprocal gyromagnetic device application', IEEE Trans. on Microwave Theory Tech., vol. 17, no. 12, pp. 1087-1090, Dec. 1969 https://doi.org/10.1109/TMTT.1969.1127105
  2. I. D. Robertson, MMIC Design, London, UK, IEE, 1995
  3. G. Ghione, C. U. Naldi, 'Coplanar waveguides for MMIC applications: Effect of upper shielding, conductor backing, finite-extent ground planes and lineto line coupling', IEEE Trans. on Microwave Theory Tech., vol. 35, no. 3, pp. 260-267, Mar. 1987 https://doi.org/10.1109/TMTT.1987.1133637
  4. K. E. Jones et al., 'MM-wave wafer-probes span 0 to 50 GHz', Microwave J., pp. 177-183, Apr. 1987
  5. GEC-Marconi, GaAs IC Foundry Design Manual, GEC-Marconi Limited, Oct. 1997
  6. G. Strqub, P. Ehret, and W. Menzel, 'On-wafer measurement of microstrip-based MMICs without via holes', in IEEE MTT-S Dig., pp. 1399-1402, 1996
  7. G. Gauthier, L. P. Katehi, and G. M. Rebeiz, 'Wband finite ground coplanar waveguide(FGCPW) to microstrip line transition', in IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, pp. 107-109, Jun. 1998
  8. R. R. Holtaman, 'A study of transition effects in supercomponents', Microwave J., Feb. 2005
  9. C. Veyres, V. F. Hanna, 'Extension of the application of conformal mapping techniques to coplanar lines with finite dimensions', Int. J. Electron, vol. 48, no. 1, pp. 47-56, Jul. 1980 https://doi.org/10.1080/00207218008901066
  10. G. Zheng, J. Papaploymerou, and M. M. Tentzeris, 'Wideband coplanar waveguide RF probe pad to microstrip transitions without via holes', IEEE Microwave and Wireless Components Lett., vol. 13, no. 12, Dec. 2003
  11. Ming Yu, R. Vahldieck, and J. Huang, 'Comparing coax launcher and wafer probe excitation for 10 mil conductor backed CPW with via holes and airbridges', in IEEE MTT-S Dig., pp. 705-708, 1993