수계에서 제타전위를 이용한 이산화티탄의 분산특성에 대한 평가

The Evaluation for Characteristics of Titanium Dioxide Dispersion in Aqeous Medium by Zeta Potential

  • 이강연 (동아제약(주) 화장품생산사업부) ;
  • 박병준 (동아제약(주) 화장품생산사업부) ;
  • 김중구 (동아제약(주) 화장품생산사업부) ;
  • 조춘구 (숭실대학교 환경화학공학과) ;
  • 김봉남 (동아제약(주) 화장품생산사업부)
  • Lee, Kang-Yen (Cosmetic Research Institute, Dong-A Pharmaceutical Co., Ltd) ;
  • Park, Byung-Jun (Cosmetic Research Institute, Dong-A Pharmaceutical Co., Ltd) ;
  • Kim, Joong-Koo (Cosmetic Research Institute, Dong-A Pharmaceutical Co., Ltd) ;
  • Zhoh, Choon-Koo (Department of Chemical & Environmental Engineering, Soongsil University) ;
  • Kim, Bong-Nam (Cosmetic Research Institute, Dong-A Pharmaceutical Co., Ltd)
  • 발행 : 2007.06.30

초록

제타전위를 이용하여 이산화티탄의 분산 안정성을 평가하고 이를 통하여 분산안정도 향상에 응용하고자 하였다. 본 연구에서는 제타전위와 관련된 전기이중층, 전기영동, 등전점 및 전기 침투에 대하여 설명하였으며 측정이론을 기술하였다. H-S equation을 이용하여 수계에 분산된 미립자 이산화티탄의 pH변화에 따른 제타전위 변화를 측정하였으며 제타전위는 pH $3.0{\sim}9.0$에서 음의 값으로 측정되었다. 제타전위 값은 pH값 상승에 따라 절대값이 증가하였으며 분산액의 pH 8.0과 9.0에서는 지속적으로 분산이 유지되었다. 이를 통하여 제타전위가 이산화티탄의 분산에 영향을 미치며 제타전위의 절대값 크기가 수계에서 이산화티탄의 분산안정도에 중요한 역할을 하는 것으로 생각된다.

The stability of titanium dioxide dispersion was evaluated by zeta ($\zeta$) potential and we intended to apply it for improvement of dispersion stability. Both theories related to $\zeta$ potential (electric double layer, electrophoresis, isoelectric point and electroosmosis) and a method to measure $\zeta$ potential were explained in this study. The change in $\zeta$ potential of $TiO_2$ dispersion was measured by means of Henry's function of Helmholtz-Smoluchowski's equation (H-S equation). The $\zeta$ potentials of $TiO_2$ dispersion were negative in all measured pH values ($3.0{\sim}9.0$), and absolute values of $\zeta$ potentials of $TiO_2$ increased as pH values increased. $TiO_2$ dispersion was maintained in pH 8.0 and 9.0 respectively. From these results, we suggest that $\zeta$ potentials have an effect on $TiO_2$ dispersion and absolute value of $\zeta$ potentials played an important role in the stability of $TiO_2$ dispersion in aqeous medium.

키워드

참고문헌

  1. C. Washington, Zeta potential in pharmaceutical formulation, 55, Malvern instruments, United kingdom (1999)
  2. R. Hunter, Zeta potential in colloid science, 64, Academic press (1984)
  3. A. Fernandez-Nieves and F. J. de las Nieves, Colloids and surfaces A : physicochem, Eng. Aspects, 148, 231 (1999) https://doi.org/10.1016/S0927-7757(98)00763-8
  4. E. J. W. Verwey and J. Th. G. Overbeek, Theory of the stability of lyophobic colloids, Elsevier science, Amsterdam (1948)
  5. H. Matsumura and K. Furusawa, Electrical phenomena at the surface of phospholipid membranes relevant to the sorption of ionic compounds, Adv. Colloid Interface Sci., 30, 71 (1989) https://doi.org/10.1016/0001-8686(89)80004-1
  6. D. J. Crommelin, Influence of lipid composition and ionic strength on the physical stability of liposomes, J. Pharm. Sci., 73(11), 1559 (1984) https://doi.org/10.1002/jps.2600731118
  7. M. Minor, A. J. Linde, H. P. Leeuwen, and J. Lyklema, Dynamic aspects of electrophoresis and electroosmosis: a new fast method for measuring particle mobilities, J. Colloid Int. Sci., 189, 370 (1997) https://doi.org/10.1006/jcis.1997.4844
  8. J. Sunamoto, K. Iwamoto, M. Takada, T. Yuzuriha, and K. Katayama, Improved drug delivery to target specific organs using liposomes anchored with polysaccharides, Polymer Sci. Technol., 23, 157 (1983)
  9. A. Zachowski, Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement, Biochem. J., 294, 1 (1993) https://doi.org/10.1042/bj2940001
  10. D. J. Shaw, Electrophoresis, 2, 29, Academy, New York (1969)
  11. B. K, Sidhu, C. Washington, S. S. Davis, and T. S. Purewal, Electrophoretic properties of lactose and salbutamol sulfate suspensions in halogenated solvents, Langmuir, 9(3) 839 (1993) https://doi.org/10.1021/la00027a038
  12. J. Th. G. Overbeek, Philips research report, 1, 315 (1946)
  13. G. Ceve, Chem. Phys. Lipid, 64, 163 (1993) https://doi.org/10.1016/0009-3084(93)90064-A
  14. S. McLaughlin and H. Harary, The hydrophobic adsorption of charged molecules to bilayer membranes: a test of the applicability of the stem equation, Biochem., 15(9), 1941 (1976) https://doi.org/10.1021/bi00654a023
  15. Paul C. Hiemenz, Principle of colloid and surface chemistry, 4, 781, Marcel Dekker, New York (1986)
  16. M. Nara, Cosmetics & Toiletries, 94, 23 (1979)