DOI QR코드

DOI QR Code

Temperature-dependent Development and Its Model of the Greenbug, Schizaphis graminum (Rondani) (Homoptera: Aphididae)

보리두갈래진딧물 [Schizaphis graminum (Rondani)]의 온도발육과 발육모형

  • Lee, Jang-Ho (Faculty of Biological Resources Science, College of Agriculture and Life Sciences, Institute of Agricultural Science & Technology, Chonbuk National University) ;
  • Kim, Tae-Heung (Faculty of Biological Resources Science, College of Agriculture and Life Sciences, Institute of Agricultural Science & Technology, Chonbuk National University) ;
  • Kim, Ji-Soo (Organic Farming Technology Division, Crop Life Safety Department, National Institute of Agricultural Science and Technology, RDA) ;
  • Hwangn, Chang-Yeon (Faculty of Biological Resources Science, College of Agriculture and Life Sciences, Institute of Agricultural Science & Technology, Chonbuk National University) ;
  • Lee, Sang-Guei (Research Management Division, Research Management Bureau)
  • 이장호 (전북대학교 농업생명과학대학 생물자원과학부) ;
  • 김태흥 (전북대학교 농업생명과학대학 생물자원과학부) ;
  • 김지수 (농촌진흥청 농업과학기술원 친환경농업과) ;
  • 황창연 (전북대학교 농업생명과학대학 생물자원과학부) ;
  • 이상계 (농업진흥청 연구개발국 연구관리과)
  • Published : 2007.08.30

Abstract

The development of Schizaphis graminum (Rondani) was studied at various constant temperatures ranging from 15 to $32.5^{\circ}C$, with $65{\pm}5%$ RH, and a photoperiod of 16L:8D. Mortality of the $1_{st}-2_{nd}\;and\;the\;3_{rd}-4_{th}$ stage nymphs were similar at most temperature ranges while at high temperature of $32.5^{\circ}C$, more $3_{rd}-4_{th}$ stage individuals died. The total developmental time ranged from 13.8 days at $15^{\circ}C$ to 4.9 days at $30.0^{\circ}C$ suggesting that the higher the temperature, the faster the development. However, at higher end temperature of $32.5^{\circ}C$ the development took 6.4 days. The lower developmental threshold temperature and effective accumulative temperatures for the total immature stage were $6.8^{\circ}C$ and 105.9 day-degrees, respectively and the nonlinear shape of temperature related development was well described by the modified Sharpe and DeMichele model. The normalized cumulative frequency distributions of developmental period for each life stage were fitted to the three-parameter Weibull function. The attendance of shortened developmental times was apparent with $1_{st}-2_{nd}\;nymph,\;3_{rd}-4_{th}$ nymph, and total nymph stages in descending order. The coefficient of determination $r^2$ ranged between 0.80 and 0.87.

보리두갈래진딧물 [Schizaphis graminum (Rondani)] 의 발육실험은 $15-32.5^{\circ}C$, 상대습도 $65{\pm}5%$, 광주기 16L:8D 조건에서 조사하였다. 진딧물의 발육 중 약충 사충률은 $15^{\circ}C$에서 $32.5^{\circ}C$까지 조사했을 때, 어린약충기간의 사충률이 대부분을 차지하였고, 온도가 높아지면서 사충률이 점차적으로 감소하였다. 그러나 $30^{\circ}C$부터 다시 증가하여, $32.5^{\circ}C$에서 다른 온도보다 사충률이 높게 나타났다. 진딧물의 전체 약충 발육기간을 보면 $30^{\circ}C$에서 4.9 일로 가장 짧았고 $15^{\circ}C$에서 13.8 일로 가장 길었다. $15^{\circ}C$에서 $30^{\circ}C$까지 온도가 증가함에 따라 발육기간이 짧아지는 경향을 보이지만, $32.5^{\circ}C$부터 다시 발육기간이 6.4 일로 길어졌고, $35^{\circ}C$에서는 모든 약충이 죽어서 발육기간에 포함하지 않았다. 발육영점온도는 $6.8^{\circ}C$이었고, 유효 적산온도는 105.9일도였다. 온도별 발육율은 Sharpe and DeMichele 의 모델을 변형시켜 Schoolfield 등이 제시한 온도별 발육모형에 잘 부합되어 보리두갈래 진딧물의 발육모형을 적용하는데 적합한 것으로 생각한다. 생리적 연령에 따른 발육완성시기를 Weibull function을 이용했을 때 온도별 발육시기의 누적발육률을 비교적 잘 설명하였다.

Keywords

References

  1. Akey, D.H. & G.D. Butler Jr. 1989. Developmental rates and fecundity of apterous Aphis gossypii on seedlings of Gossypium hirsutum. Southwestern Entomologist. 14: 295-299
  2. An, S.L. 1963. On pests of barley in korea. 10
  3. Eastop, V.F. 1983. The biology of the principle virus vectors. In: Plant virus epidemiology. (Ed) Plumb, R.T.; Thresh, J.M. Oxford: Blackvell Scientific Publication. 115-132
  4. Gregg, S.N. & R.T. Negata. 2005. Greenbug, Schizaphis graminum (Rondani) (Insecta: Heteroptera: Aphididae). 1-4
  5. Gu, K. 1969. Agricultural insect pest. Bumin Munhwasa, Seoul. 77-198
  6. Jandel. 1996. Table curve 2D. Automated curve fitting and equstin discovery; version 4.0. Jandel Scientific, San Rafel, CA
  7. Kim, J.S. 2004. Bionomics of aphids on vegetable in the greenhouse. Ph. D. thesis, Chonbuk Nat'l Univ. 9-14
  8. King, E.G. & J.R. Phillips. 1989. The 42nd annual conference report on cotton insect research and control. In: Proc. Beltwide Cotton Production Research Conference, Mempis, Tennessee, USA. 180-191
  9. Lee, E.S 1963, Agricultural pests, Seoul. 236
  10. Lee, G.H. 1999. Ecological characteristics and potentials of Chrysopa pallens (Neuroptera: Chrysophidae) as a predator of vegetable aphids. Chonnam National Univ. Ph. D. thesis
  11. Lee, H.R. 1996a. Studies on the preservation and utilization of useful natural enemies for conservative strategies of environment (IPM: Integrated Pests Managements). Department of Agricultural Biology, College of Agriculture, Chungbuk National University. 121-122
  12. Lee, K.J. 1996b. Characteristics and genome organization of barley mild mosaic virus in Korea. Chonbuk National Univ. Ph. D. thesis. pp. 7
  13. Ministry of Agriculture and Forestry. 2004. Agricultural and Forestry statistical yearbook. 74-122
  14. Mink, G.I. 1993. Pollen and seed transmitted viruses and viroids. Annu. Rev. Phytopathol. 31: 375-402 https://doi.org/10.1146/annurev.py.31.090193.002111
  15. Paik, W.H. 1972. Encyclopedia of animals and plants in korea (Insect V). Samwha publish Co
  16. Reed, L.K., I.D. Peries, & G.C. Hamilton. 1981. Differentiation and developmental rate of nymphal instars of greenbug reared on sorghum. Journal of the Kansas Entomological Society 54: 743-747
  17. Rochow, W.F. 1977. Dependent virus transmissions from mixed infections. In: K.F. Harris and K. Maramorosch (Editors), Aphids as virus vectors. Academic Press, New York and London, 253-273
  18. SAS Institute. 1999. SAS version 8.1 Intitute Cary, N.C
  19. Schoolfield, R.M., P.J.H. Sharpe & C.E. Magnuson. 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction rate theory. J. Theor. Biol. 88: 719-731 https://doi.org/10.1016/0022-5193(81)90246-0
  20. Shim, J.Y., J.S. Park & W.H. Paik. 1979. Studies on the life history of cotton aphid, Aphid gossypii Glover (Homoptera). Korean J. PI. Prot. 18: 85-88
  21. Slosser, J.E., W.E. Pinchak, & D.E. Rummel. 1989. A review on known and potential factors affecting the population dynamics of the cotton aphid. Southwestern Entomologist. 14: 302-313
  22. Son, J.S. & Y.H. Song. 1994. Ecological characteristics alatae and apterae of the green peach aphid, Myzus persicae (Sulzer) (Homoptera : Aphididae) on tobacco plants. J. Korean Soc. Tobacco Sci. 16: 113-121
  23. Wagner, T.L., Wu, P.J.H. Sharpe, & R.N. Coulson. 1984a. Modeling distribution of insect development time: A literature review and application of Weibull function. Ann. Entomol. Soc. Am. 77: 475-487 https://doi.org/10.1093/aesa/77.5.475
  24. Wagner, T.L., Wu, P.J.H. Sharpe, R.M. Schoolfield & R.N. Coulson. 1984b. Modeling insect development rate: A literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 77: 208-225 https://doi.org/10.1093/aesa/77.2.208

Cited by

  1. Changing global risk of invading greenbug Schizaphis graminum under climate change vol.88, 2016, https://doi.org/10.1016/j.cropro.2016.06.008