참고문헌
- J. Casillas, O. Cordon, and F. Herrera, Interpretability Issues in Fuzzy Modeling, Springer, 2003
- J. Casillas, O. Cordon, and F. Herrera, Accuracy Improvements in Linguistic Fuzzy Modeling, Springer, 2003
- R. Mikut, J. Jakel, and L. Groll, 'Interpretability issues in data-based learning of fuzzy systems,' Fuzzy Sets and Systems, vol. 150, no. 2, pp. 179-197, 2005 https://doi.org/10.1016/j.fss.2004.06.006
- H. Wang, S. Kwong, Y. Jin, W. Wei, and K. F. Man, 'Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction,' Fuzzy Sets and System, vol. 149, no. 1, pp. 149-186, 2005 https://doi.org/10.1016/j.fss.2004.07.013
- H. Roubos and M. Setnes, 'Compact and transparent fuzzy models and classifiers through iterative complexity reduction,' IEEE Trans. on Fuzzy Systems, vol. 9, no. 4, pp. 516-524, 2001 https://doi.org/10.1109/91.940965
- D. D. Nauck, 'Fuzzy data analysis with NEFCLASS,' Approximate Reasoning, vol. 32, no. 2-3, pp.103-130, 2003 https://doi.org/10.1016/S0888-613X(02)00079-8
- Y. Jin, 'Fuzzy modeling of high-dimensional systems complexity reduction and interpretability improvement,' Fuzzy Sets and Systems, vol. 8, no. 2, pp. 212-221, 2000 https://doi.org/10.1109/91.842154
- Y. Jin, Advanced Fuzzy Systems Design and Applications, Physical-verl, New York, 2003
- O. Kaynak, K. Jezernik, and A. Szeghegyi, 'Complexity reduction of rule based models: a survey,' Proc of IEEE Int. Conf. on Fuzzy Systems, pp. 1216-1222, 2002
- S. Guillaume, 'Designing fuzzy inference systems from data: An interpretability-oriented review,' IEEE Trans on Fuzzy Systems, vol. 9, no. 3, pp. 426-443, 2001 https://doi.org/10.1109/91.928739
- T. Sudkamp, A. Knapp, and J. Knapp, 'Model generation by domain refinement and rule reduction,' IEEE Trans. on Systems, Man, and Cybernetics, vol. 33, no. 1, pp. 45-55, 2003 https://doi.org/10.1109/TSMCB.2003.808186
- M. Setnes and H. Hellendoorn, 'Orthogonal transforms for ordering and reduction of fuzzy rules,' Proc of IEEE Int. Conf. on Fuzzy Systems, pp. 700-705, 2000
- C. A. Pena and M. Sipper, 'FuzzyCoCo: A cooperative-coevolutionary approach to fuzzy modeling,' IEEE Trans. on Fuzzy Systems, vol. 9, no. 5, pp. 727-737, 2001 https://doi.org/10.1109/91.963759
- O. Cordon and F. Herrer, Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Rule Bases, World Scientific, Singapore, 2000
- M. R. Delgado and J. Fernando, 'Hierarchical genetic fuzzy systems,' Information Sciences, vol. 136, no. 1-4, pp. 29-52, 2001 https://doi.org/10.1016/S0020-0255(01)00140-2
- T. Takagi and M. Sugeno, 'Fuzzy identification of systems and its application to modeling and control,' IEEE Trans. on Systems Man and Cybernetics, vol. 15, no. 1, pp. 116-132, 1985
- J. C. Bezdek, Pattern Recognition with Fuzzy Objective Algorithm, Plenum, New York, 1981
- D. Gustafson and W. Kessel, 'Fuzzy clustering with a fuzzy covariance matrix,' Proc. of IEEE Conf. on Decision and Control, pp. 761-766, 1979
- J. Abonyi, B. Babuska, and F. Szeifert, 'Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models,' IEEE Trans. on Systems, Man and Cybernetics, Part B, vol. 32, no. 5, pp. 612-621, 2002 https://doi.org/10.1109/TSMCB.2002.1033180
- R. Babuska, Fuzzy Modeling for Control, Kluwer Academic Publishers, Boston, 1998
- M. Setnes and R. Babuska, 'Similarity measures in fuzzy rule base simplification,' IEEE Trans. on Systems Man and Cybernetics, vol. 28, no. 3, pp. 376-386, 1998 https://doi.org/10.1109/3477.678632
- H. Ishibushi, T. Nakashima, and T. Murata, 'Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems,' IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 29, no. 5, pp. 601-618, 1999 https://doi.org/10.1109/3477.790443
- K. Deb, A. Pratap, and S. Agarwal, 'A fast and elitist multiobjective genetic algorithm: NSGA-II,' IEEE Trans. on Evolutionary Computation, vol. 6, no. 2 ,pp. 182-197, 2002 https://doi.org/10.1109/4235.996017
- J. D. Knowles and D. Come, 'Approximating the nondominated front using the pareto archived evolution strategy,' Evolutionary Computation, vol. 8, no. 2, pp. 149-172, 2000 https://doi.org/10.1162/106365600568167
- E. Zitzler and L. Thiele, 'Multi-objective evolutionary algorithms: A comparative case study and the strength Pareto approach,' IEEE Trans. on Evolutionary Computation, vol. 3, no. 4, pp. 257-271, 1999 https://doi.org/10.1109/4235.797969
- M. Potter and A. D. Kenneth, 'Cooperative coevolution: Architecture for evolving coadapted subcomponents,' Evolutionary Computation, vol. 8, no. 1, pp. 1-29, 2000 https://doi.org/10.1162/106365600568086
- J. Yen and L. Wang, 'Simplifying fuzzy rule-based models using orthogonal transformation methods,' IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetic, vol. 29, no. 1, pp. 13-24, 1999 https://doi.org/10.1109/3477.740162
- H. Roubos and M. Setnes, 'Compact and transparent fuzzy models and classifiers through iterative complexity reduction,' IEEE Trans. on Fuzzy Systems, vol. 9, no. 4, pp. 516-524, 2001 https://doi.org/10.1109/91.940965
- M. S. Kim, C. H. Kim, and J. J. Lee, 'Building a fuzzy model with transparent membership functions through constrained evolutionary optimization,' International Journal of Control, Automation, and Systems, vol. 2, no. 3, pp. 298-309, 2004
- R. P. Paiva and A. Dourado, 'Interpretability and learning in neuro-fuzzy systems,' Fuzzy Sets and Systems, vol. 147, no. 1, pp. 17-38, 2004 https://doi.org/10.1016/j.fss.2003.11.012