Batch and Continuous Culture Kinetics for Production of Carotenoids by ${\beta}$-Ionone-Resistant Mutant of Xanthophyllomyces dendrorhous

  • Park, Ki-Moon (Department of Food Science and Biotechnology, Faculty of Life Science and Technology, Sungkyunkwan University) ;
  • Song, Min-Woo (Department of Food Science and Biotechnology, Faculty of Life Science and Technology, Sungkyunkwan University) ;
  • Kang, Seog-Jin (WooGene B&G Co., Ltd.) ;
  • Lee, Jae-Heung (Department of Food Science and Biotechnology, Faculty of Life Science and Technology, Sungkyunkwan University)
  • 발행 : 2007.07.31

초록

A ${\beta}$-ionone-resistant mutant strain isolated from the red yeast Xanthophyllomyces dendrorhous KCTC 7704 was used for batch and continuous fermentation kinetic studies with glucose media in a 2.5-1 jar fermentor at $22^{\circ}C$ and pH 4.5. The kinetic pattern of growth and carotenoid concentration in the batch fermentations exhibited a so-called mixed-growth-associated product formation, possibly due to the fact that the content of intracellular carotenoids depends on the degree of physical maturation toward adulthood. To determine the maximum specific growth rate constant (${\mu}_m$) and Monod constant ($K_s$) for the mutant, glucose-limited continuous culture studies were performed at different dilution rates within a range of $0.02-0.10\;h^{-1}$. A reciprocal plot of the steady-state data (viz., reciprocal of glucose concentration versus residence time) obtained from continuous culture experiments was used to estimate a ${\mu}_m$ of $0.15\;h^{-1}$ and $k_s$ of 1.19 g/l. The carotenoid content related to the residence time appeared to assume a typical form of saturation kinetics. The maximum carotenoid content ($X_m$) for the mutant was estimated to be $1.04\;{\mu}g/mg$ dry cell weight, and the Lee constant ($k_m$), which was tentatively defined in this work, was found to be 3.0 h.

키워드

참고문헌

  1. Acheampong, E. A. and A. M. Martin. 1995. Kinetic studies on the yeast Phaffia rhodozyma. J. Basic Microbiol. 35: 147-155 https://doi.org/10.1002/jobm.3620350304
  2. An, G. H., D. B. Schuman, and E. A. Johnson. 1989. Isolation of Phaffia rhodozyma mutants with increased astaxanthin content. Appl. Environ. Microbiol. 55: 116-124
  3. Calo, P., J. B. Velazquez, C. Sieiro, P. Blanco, E. Longo, and T. Villa. 1995. Analysis of astaxanthin and other carotenoids from several Phaffia rhodozyma mutants. J. Agric. Food Chem. 43: 1396-1399 https://doi.org/10.1021/jf00053a049
  4. Chumpolkulwong, N., T. Kakizono, S. Nagai, and N. Nishio. 1997. Increased astaxanthin production by Phaffia rhodozyma mutants isolated as resistant to diphenylamine. J. Ferment. Bioeng. 83: 429-434 https://doi.org/10.1016/S0922-338X(97)82996-0
  5. Chun, S. B., J. E. Chin, S. Bai, and G. H. An. 1992. Strain improvement of Phaffia rhodozyma by protoplast fusion. FEMS Microbiol. Lett. 93: 221-226 https://doi.org/10.1111/j.1574-6968.1992.tb05101.x
  6. Fang, T. J. and Y. S. Cheng. 1993. Improvement of astaxanthin production by Phaffia rhodozyma through mutation and optimization of culture conditions. J. Ferment. Bioeng. 75: 466-469 https://doi.org/10.1016/0922-338X(93)90099-T
  7. Guerin, M., M. E. Huntley, and M. Olaizola. 2003. Haematococcus astaxanthin: Applications for human health and nutrition. Trends Biotechnol. 21: 210-216 https://doi.org/10.1016/S0167-7799(03)00078-7
  8. Haard, N. F. 1988. Astaxanthin formation by yeast Phaffia rhodozyma on molasses. Biotechnol. Lett. 10: 609-614 https://doi.org/10.1007/BF01024710
  9. Jin, E., C. G. Lee, and J. E. W. Polle. 2006. Secondary carotenoid accumulation in Haematococcus (Chlorophyceae): Biosynthesis, regulation, and biotechnology. J. Microbiol. Biotechnol. 16: 821-831
  10. Johnson, E. A. and M. J. Lewis. 1979. Astaxanthin formation by the yeast Phaffia rhodozyma. J. Gen. Microbiol. 115: 173-183 https://doi.org/10.1099/00221287-115-1-173
  11. Kesava, S. S., G. H. An, C. H. Kim, S. K. Rhee, and E. S. Choi. 1998. An industrial medium for improved production of carotenoids from a mutant strain of Phafjia rhodozyma. Bioprocess Eng. 19: 165-170
  12. Kim, J. H. and H. I. Chang. 2006. High-level production of astaxanthin by Xanthophyllomyces dendrorhous mutant JH1, using chemical and light induction. J. Microbiol. Biotechnol. 16: 381-385
  13. Kim, J. H., S. K. Choi, Y. S. Park, C. W. Yun, W. D. Cho, K. M. Chee, and H. I. Chang. 2006. Effect of culture conditions on astaxanthin formation in red yeast Xanthophyllomyces dendrorhous mutant JH1. J. Microbiol. Biotechnol. 16: 438-442
  14. Kim, S. J., G J. Kim, D. H. Park, and Y. W. Ryu. 2003. Highlevel production of astaxanthin by fed-batch culture of mutant strain Phaffia rhodozyma AJ-6-1. J. Microbiol. Biotechnol. 13: 175-181
  15. Kobayashi, M. 2003. Astaxanthin biosynthesis enhanced by reactive oxygen species in the green alga Haematococcus pluvialis. Biotechnol. Bioprocess Eng. 8: 322-330 https://doi.org/10.1007/BF02949275
  16. Lewis, M. J., N. Ragot, M. C. Berlant, and M. Miranda. 1990. Selection of astaxanthin-overproducing mutants of Phaffia rhodozyma with ${\beta}$-ionone. Appl. Environ. Microbiol. 56: 2944-2945
  17. Lorenz, R. T. and G R. Cysewski. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18: 160-167 https://doi.org/10.1016/S0167-7799(00)01433-5
  18. McCoy, M. 1999. Astaxanthin market a hard one to crack. Chem. Eng. News 77: 15-17 https://doi.org/10.1021/cen-v077n015.p015
  19. Meyer, P. and J. C. Ou Preez. 1994. Effect of culture conditions on astaxanthin production by a mutant of Phaffia rhodozyma in batch and chemostat culture. Appl. Microbiol. Biotechnol. 40: 780-785 https://doi.org/10.1007/BF00173974
  20. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  21. Miller, M. W., M. Yoneyama, and M. Soneda. 1976 Phaffia, a new yeast genus in the Deuteromycotina (Blastomycetes). Int. J. Syst. Bacteriol. 26: 286-291 https://doi.org/10.1099/00207713-26-2-286
  22. Parajo, J. C., V. Santos, and M. Vazquez. 1998. Production of carotenoids by Phaffia rhodozyma growing on media made from hemicellulosic hydrolysates of Eucalyptus globules wood. Biotechnol. Bioeng. 59: 501-506 https://doi.org/10.1002/(SICI)1097-0290(19980820)59:4<501::AID-BIT13>3.0.CO;2-C
  23. Park, K. M., Y. J. Kim, M. W. Song, S. J. Kang, and J. H. Lee. 2006. Fermentation kinetics for production of carotenoids by ${\beta}$-ionone resistant mutant of Xanthophyllomyces dendrorhous. Korean J. Biotechnol. Bioeng. 21: 286-291
  24. Pirt, S. J. 1975. Principles of Microbe and Cell Cultivation, pp. 8-12. Halsted Press, John Wiley & Sons, NY, U.S.A
  25. Sedmak, J. J., D. K. Weerasinghe, and S. O. Jolly. 1990. Extraction and quantitation of astaxanthin from Phaffia rhodozyma. Biotechnol. Tech. 4: 107-112 https://doi.org/10.1007/BF00163282
  26. Vazquez, M. and A. Martin. 1998. Optimization of Phaffia rhodozyma continuous culture through response surface methodology. Biotechnol. Bioeng. 57: 314-320 https://doi.org/10.1002/(SICI)1097-0290(19980205)57:3<314::AID-BIT8>3.0.CO;2-K
  27. Visser, H., A. J. J. van Ooyen, and J. C. Verdoes. 2003. Metabolic engineering of the astaxanthin-biosynthetic pathway of Xanthophyllomyces dendrorhous. FEMS Yeast Res. 4: 221-231 https://doi.org/10.1016/S1567-1356(03)00158-2