Functional Analysis of the Residues C770 and G771 of E. coli 16S rRNA Implicated in Forming the Intersubunit Bridge B2c of the Ribosome

  • Published : 2007.07.31

Abstract

Structural analyses have shown that nucleotides at the positions 770 and 771 of Escherichia coli 16S rRNA are implicated in forming one of highly conserved intersubunit bridges of the ribosome, B2c. To examine a functional role of these residues, base substitutions were introduced at these positions and mutant ribosomes were analyzed for their protein synthesis ability using a specialized ribosome system. The results showed requirement of a pyrimidine at the position 770 for ribosome function regardless of the nucleotide identity at the position 771. Sucrose gradient profiles of ribosomes revealed that the loss of protein-synthesis ability of mutant ribosome bearing a base substitution from C to G at the position 770 stems from its inability to form 70S ribosomes. These findings indicate involvement of nucleotide at the position 770, not 771, in ribosomal subunit association and provide a useful rRNA mutation that can be used as a target to investigate the physical interaction between 16S and 23S rRNA.

Keywords

References

  1. Ban, N., P. Nissen, J. Hansen, P. B. Moore, and T. A. Steitz. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 ${\AA}$ resolution. Science 289: 905-920 https://doi.org/10.1126/science.289.5481.905
  2. Chapman, N. M. and H. F. Noller. 1977. Protection of specific sites in 16S RNA from chemical modification by association of 30S and 50S ribosomes. J. Mol. Biol. 109: 131-149 https://doi.org/10.1016/S0022-2836(77)80049-1
  3. Gabashvi]i, I. S., R. K. Agrawal, C. M. Spahn, R. A. Grassucci, D. I. Svergun, J. Frank, and P. Penczek. 2000. Solution structure of the E. coli 70S ribosome at 11.5 ${\AA}$ resolution. Cell 100: 537-549 https://doi.org/10.1016/S0092-8674(00)80690-X
  4. Gao, H., J. Sengupta, and M. Valle et al. 2003. Study of the structural dynamics of the E. coli 70S ribosome using realspace refinement. Cell 113: 789-801 https://doi.org/10.1016/S0092-8674(03)00427-6
  5. Hennelly, S. P., A. Antoun, M. Ehrenberg, C. O. Gualerzi, W. Knight, J. S. Lodmell, and W. E. Hill. 2005. A timeresolved investigation of ribosomal subunit association. J. Mol. Biol. 346: 1243-1258 https://doi.org/10.1016/j.jmb.2004.12.054
  6. Herr, W. and H. F. Noller. 1979. Protection of specific sites in 23S and 5S RNA from chemical modification by association of 30S and 50S ribosomes. J. Mol. Biol. 130: 421-432 https://doi.org/10.1016/0022-2836(79)90432-7
  7. Higuchi, R. 1989. Using PCR to engineer DNA, pp. 61-70. In H. A. Erlich (ed.), PCR Technology. Stockton Press, New York, NY, U.S.A
  8. Hwang, B. and S. W. Lee. 2005. Ana]ysis of in vivo interaction of HCV NS3 protein and specific RNA aptamer with yeast three-hybrid system. J. Microbiol. Biotechnol. 15: 660-664
  9. Lee, K., C. A. Holland-Staley, and P. R. Cunningham. 1996. Genetic analysis ofthe Shine-Dalgarno interaction: selection of alternative functional mRNA-rRNA combinations. RNA 2: 1270-1285
  10. Lee, K., S. Varma, J. Santalucia Jr., and P. R. Cunningham. 1997. In vivo determination of RNA structure-function relationships: Analysis of the 790 loop in ribosomal RNA. J. Mol. Biol. 269: 732-743 https://doi.org/10.1006/jmbi.1997.1092
  11. Lee, K., C. A. Holland-Sta]ey, and P. R. Cunningham. 2001. Genetic approaches to studying protein synthesis: Effects of mutations at $\Psi$516 and A535 in Escherichia coli 16S rRNA. J. Nutr. 131: 2994S-3004S
  12. Merryman, C., D. Moazed, G. Daubresse, and H. F. Noller. 1999. Nucleotides in 23S rRNA protected by the association of 30S and 50S ribosomal subunits. J. Mol. Biol. 285: 107-113 https://doi.org/10.1006/jmbi.1998.2243
  13. Mitchell, P., M. Osswald, and R. Brimacombe. 1992 Identification of intermolecular RNA cross-links at the subunit interface of the Escherichia coli ribosome. Biochemistry 31: 3004-3011 https://doi.org/10.1021/bi00126a023
  14. Powers, T. and H. F. Noller. 1991. A functional pseudoknot in 16S ribosomal RNA. EMBO J. 10: 2203-2214
  15. Ramakrishnan, V. 2002. Ribosome structure and the mechanism of translation. Cell 108: 557-572 https://doi.org/10.1016/S0092-8674(02)00619-0
  16. Rawat, U., H. Gao, A. Zavialov, R. Gursky, M. Ehrenberg, and J. Frank. 2006. Interactions of the release factor RF1 with the ribosome as revealed by cryo-EM. J. Mol. Biol. 357: 1144-1153 https://doi.org/10.1016/j.jmb.2006.01.038
  17. Ryou, S. M., J. M. Kim, J. H. Yeom, H. L. Kim, H. Y. Go, E. K. Shin, and K. Lee. 2005. Species-specific cleavage by RNase E-like enzymes in 5S rRNA maturation. J. Microbiol. Biotechnol. 15: 1100-1105
  18. Schluenzen, F., A. Tocilj, and R. Zarivach et al. 2000. Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 102: 615-623 https://doi.org/10.1016/S0092-8674(00)00084-2
  19. Shuang, J. L., C. H. Lui, S. Q. An, Y. Xing, G. Q. Zheng, and Y. F. Shen. 2006. Some universal characteristics of intertidal bacterial diversity as revealed by 16S rRNA gene-based PCR clone analysis. J. Microbiol. Biotechnol. 16: 1882-1889
  20. Schuwirth, B. S., M. A. Borovinskaya, C. W. Hau, W. Zhang, A. Vila-Sanjurjo, J. M. Holton, and J. H. Cate. 2005. Structures of the bacterial ribosome at 3.5 ${\AA}$ resolution. Science 310: 827-834 https://doi.org/10.1126/science.1117230
  21. Selmer, M., C. M. Dunham, F. V. Murphy 4th, A. Weixlbaumer, S. Petry, A. C. Kelley, J. R. Weir, and V. Ramakrishnan. 2006. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313: 1935-1942 https://doi.org/10.1126/science.1131127
  22. Spahn, C. M., R. Beckmann, N. Eswar, P. A. Penczek, A. Sali, G. Blobel, and J. Frank. 2001. Structure of the 80S ribosome from Saccharomyces cerevisiae: tRNA-ribosome and subunit-subunit interactions. Cell 107: 373-386 https://doi.org/10.1016/S0092-8674(01)00539-6
  23. Spahn, C. M., E. Jan, A. Mulder, R. A. Grassucci, P. Sarnow, and J. Frank. 2004. Cryo-EM visualization ofa viral internal ribosome entry site bound to human ribosomes: The IRES functions as an RNA-based translation factor. Cell 118: 465-475 https://doi.org/10.1016/j.cell.2004.08.001
  24. Spahn, C. M., M. G. Gomez-Lorenzo, R. A. Grassucci, R. Jorgensen, G. R. Andersen, R. Beckmann, P. A. Penczek, J. P. Ballesta, and J. Frank. 2004. Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J. 23:1008-1019 https://doi.org/10.1038/sj.emboj.7600102
  25. Szatkiewicz, J. P., H. Cho, S. M. Ryou, J. M. Kim, P. R. Cunningham, and K. Lee. 2006. Genetic analysis of a structural motif within the conserved 530 stem-loop of Escherichia coli 16S rRNA. J. Microbiol. Biotechnol. 16: 569-575
  26. Wilson, D. N., F. Schluenzen, J. M. Harms, T. Yoshida, T. Ohkubo, R. Albrecht, J. Buerger, Y. Kobayashi, and P. Fucini. 2005. X-ray crystallography study on ribosome recycling: The mechanism of binding and action of RRF on the 50S ribosomal subunit. EMBO J. 24: 251-260 https://doi.org/10.1038/sj.emboj.7600525
  27. Wimberly, B. T., D. E. Brodersen, W. M. Clemons Jr., R. J. Morgan- Warren, A. P. Carter, C. Vonrhein, T. Hartsch, and V. Ramakrishnan. 2000 Structure of the 30S ribosomal subunit. Nature 407: 327-339 https://doi.org/10.1038/35030006
  28. Yusupov, M. M., G. Z. Yusupova, A. Baucom, K. Lieberman, T. N. Earnest, J. H. Cate, and H. F. Noller. 2001. Crystal structure of the ribosome at 5.5 ${\AA}$ resolution. Science 292: 883-896 https://doi.org/10.1126/science.1060089