Cloning, Purification, and Characterization of a New DNA Polymerase from a Hyperthermophilic Archaeon, Thermococcus sp. NA1

  • Kim, Yun-Jae (Korea Ocean Research and Development Institute) ;
  • Lee, Hyun-Sook (Korea Ocean Research and Development Institute) ;
  • Bae, Seung-Seob (Korea Ocean Research and Development Institute) ;
  • Jeon, Jeong-Ho (Korea Ocean Research and Development Institute) ;
  • Lim, Jae-Kyu (Korea Ocean Research and Development Institute) ;
  • Cho, Yon-A (Korea Ocean Research and Development Institute) ;
  • Nam, Ki-Hoon (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Kang, Sung-Gyun (Korea Ocean Research and Development Institute) ;
  • Kim, Sang-Jin (Korea Ocean Research and Development Institute) ;
  • Kwon, Suk-Tae (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Lee, Jung-Hyun (Korea Ocean Research and Development Institute)
  • Published : 2007.07.31

Abstract

Genomic analysis of Thermococcus sp. NA1 revealed the presence of a 3,927-base-pair (bp) family B-type DNA polymerase gene, TNA1_pol. TNA1_pol, without its intein, was overexpressed in Escherichia coli, purified using metal affinity chromatography, and characterized. TNA1_pol activity was optimal at pH 7.5 and $75^{\circ}C$. TNA1_pol was highly thermostable, with a half-life of 3.5h at $100^{\circ}C$ and 12.5h at $95^{\circ}C$. Polymerase chain reaction parameters of TNA1_pol such as error-rate, processivity, and extension rate were measured in comparison with rTaq, Pfu, and KOD DNA polymerases. TNA1_pol averaged one incorrect bp every 4.45 kilobases (kb), and had a processivity of 150 nucleotides (nt) and an extension rate of 60 bases/s. Thus, TNA1_pol has a much faster elongation rate than Pfu DNA polymerase with 7-fold higher fidelity than that of rTaq.

Keywords

References

  1. Bae, S. S., Y. J. Kim, S. H. Yang, J. K. Lim, J. H. Jeon, H. S. Lee, S. G. Kang, S.-J. Kim, and J.-H. Lee. 2006. Thermococcus onnurineus sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area at the PACMANUS field. J. Microbiol. Biotechnol. 16: 1826-1831
  2. Barnes, W. M. 1994. PCR amplification of up to 35-kb DNA with high fidelity and high yield from A. bacteriophage templates. Proc. Natl. Acad. Sci. USA 91: 2216-2220
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  4. Choi, J. J. and S.-T. Kwon. 2004. Cloning, expression, and characterization of DNA polymerase from hyperthermophilic bacterium Aquifex pyrophilus. J. Microbiol. Biotechnol. 14: 1022-1030
  5. Hashimoto, H., M. Nishioka, S. Fujiwara, M. Takagi, T. Imanaka, T. Inoue, and Y. Kai. 2001. Crystal structure of DNA polymerase from hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. J. Mol. Biol. 306: 469-477 https://doi.org/10.1006/jmbi.2000.4403
  6. Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease. 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77: 51-59 https://doi.org/10.1016/0378-1119(89)90358-2
  7. Hodges, R. A., F. B. Perler, C. J. Noren, and W. E. Jack. 1992. Protein splicing removes intervening sequences in an archaea DNA polymerase. Nucleic Acids Res. 20: 6153-6157 https://doi.org/10.1093/nar/20.23.6153
  8. Holden, J. F., K. Takai, M. Summit, S. Bolton, J. Zyskowski, and J. A. Baross. 2001. Diversity among three novel groups of hyperthermophilic deep-sea Thermococcus species from three sites in the northeastern Pacific Ocean. FEMS Microbiol. Ecol. 36: 51-60 https://doi.org/10.1111/j.1574-6941.2001.tb00825.x
  9. Ito, J. and D. K. Braithwaite. 1991. Compilation and alignment of DNA polymerases. Nucleic Acids Res. 19: 4045-4057 https://doi.org/10.1093/nar/19.15.4045
  10. Kahler, M. and G. Antranikian. 2000. Cloning and characterization of family B DNA polymerase from the hyperthermophilic crenarchaeon Pyrobaculum islandicum. J. Bacteriol. 182: 655-663 https://doi.org/10.1128/JB.182.3.655-663.2000
  11. Kong, H., R. B. Kucera, and W. E. Jack. 1993. Characterization of a DNA polymerase from the hyperthermophile archaea Thermococcus litoralis. Vent DNA polymerase, steady state kinetics, thermal stability, processivity, strand displacement, and exonuclease activities. J. Biol. Chem. 268: 1965-1975
  12. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  13. Lundberg, K. S., D. D. Shoemaker, M. W. Adams, J. M. Short, J. A. Sorge, and E. J. Mathur. 1991. High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene 108: 1-6 https://doi.org/10.1016/0378-1119(91)90480-Y
  14. Mattila, P., J. Korpela, T. Tenkanen, and K. Pitkanen. 1991. Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase - an extremely heat stable enzyme with proofreading activity. Nucleic Acids Res. 19: 4967-4973 https://doi.org/10.1093/nar/19.18.4967
  15. Nishioka, M., H. Mizuguchi, S. Fujiwara, S. Komatsubara, M. Kitabayashi, H. Uemura, M. Takagi, and T. Imanaka. 2001. Long and accurate PCR with a mixture of KOD DNA polymerase and its exonuclease deficient mutant enzyme. J. Biotechnol. 88: 141-149 https://doi.org/10.1016/S0168-1656(01)00275-9
  16. Peder, F. B., S. Kumar, and H. Kong. 1996. Thermostable DNA polymerases. Adv. Protein Chem. 48: 377-435 https://doi.org/10.1016/S0065-3233(08)60367-8
  17. Peder, F. B., G. J. Olsen, and E. Adam. 1997. Compilation and analysis of intein sequences. Nucleic Acids Res. 25: 1087 -1093 https://doi.org/10.1093/nar/25.6.1087
  18. Robb, F. T., A. R. Place, K. R. Sowers, H. J. Schreier, S. DasSarma, and E. M. Fleischmann. 1995. Archaea: A Laboratory Manual, pp. 3-29. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  19. Saiki, R. K., D. H. Gelfand, S. Stoffel, R. Higuchi, G. Horn, K. B. Mullis, and H. A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-491 https://doi.org/10.1126/science.2448875
  20. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  21. Shin, H.-J., S.-K. Lee, J. J. Choi, S. Koh, J.-H. Lee, and S.- T. Kwon. 2005. Cloning, expression, and characterization of a family B-type DNA polymerase from the hyperthermophilic crenarchaeon Pyrobaculurn arsenaticum and its application to PCR. J. Microbiol. Biotechnol. 15: 1359-1367
  22. Southworth, M. W., H. Kong, R. B. Kucera, J. Ware, H. W. Jannasch, and F. B. Peder. 1996. Cloning of thermostable DNA polymerases from hyperthermophilic marine Archaea with emphasis on Thermococcus sp. 9 degrees N-7 and mutations affecting 3'-5' exonuclease activity. Proc. Natl. Acad. Sci. USA 93: 5281-5285
  23. Takagi, M., M. Nishioka, H. Kakihara, M. Kitabayashi, H. Inoue, B. Kawakami, M. aka, and T. Imanaka. 1997. Characterization of DNA polymerase from Pyrococcus sp. strain KOD1 and its application to PCR. Appl. Environ. Microbiol. 63: 4504-4510
  24. Von Hippel, P. H., F. R. Fairfield, and M. K. Dolejsi. 1994. On the processivity of polymerases. Ann. NY Acad. Sci. 726: 118-131 https://doi.org/10.1111/j.1749-6632.1994.tb52803.x
  25. Wang, Y., E. P. Dennis, M. Li, C. S. John, F. Michael, and B. V. H. Peter. 2004. A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro. Nucleic Acids Res. 32: 1197-1207 https://doi.org/10.1093/nar/gkh271