DOI QR코드

DOI QR Code

Submarine Discharge and Geochemical Characteristics of Groundwater in the Southeastern Coastal Aquifer off Busan, Korea

부산 남동지역 연안 대수층내 지하수의 지화학적 특성과 유출

  • Yang, Han-Soeb (Department of Oceanography, Pukyong National University) ;
  • Hwang, Dong-Woon (School of Earth and Environmental Sciences, Seoul National University)
  • Published : 2007.06.30

Abstract

We measured the salinity, pH, and concentrations of $^{222}Rn$ and nutrients in groundwater in the southeastern coastal aquifer off Busan from March to September 2005 to evaluate its submarine discharge and geochemical characteristics. Salinity in coastal groundwater increased sharply at 20 m depth and exceeded 25 ppt below 40 m during the study period, indicating that a strong transition zone between fresh groundwater and seawater developed between 20 and 40 m depths. Fresh groundwater in the upper layer of this transition zone was characterized by high pH, $^{222}Rn$, dissolved inorganic nitrogen (DIN), and dissolved inorganic phosphorus (DIP) and low dissolved inorganic silicate (DSi) relative to seawater in the lower layer. In addition, the vertical profiles of the $^{222}Rn$, DIN, and DIP concentrations imply that a strong advective groundwater flow occurs along the interface of fresh groundwater and seawater near 20 m depth. The geochemical constituents in coastal groundwater also showed strong seasonal variation, with the highest concentrations in summer (June 2005) due to the changes of groundwater recharge and sea level. This implies that the input of terrestrial chemical species into the coastal ocean through submarine groundwater discharge (SGD) could change seasonally. To ascertain the seasonal variation of SGD and SGD-driven chemical species fluxes, and associated ecological responses in the coastal ocean, more extensive studies are necessary using various SGD tracers or seepage meters in the future.

Keywords

References

  1. Appelo, C.A.J. and D. Postma. 1993. Geochemistry, Groundwater and Pollution, Balkema, Rotterdam, 1-649
  2. Bear, J., A.H.D. Cheng, S. Sorek, D. Ouazar and I. Herrera, 1999. Seawater Intrusion in Coastal Aquifer-concepts, Methods and Practices, Kluwer Academic Pub., 1-625
  3. Berner, R.A 1980. Early Diagenesis. Princeton University Press, Princeton, N.J., 1-241
  4. Burnett, W.C., M. Taniguchi and J. Oberdorfer. 2001. Measurement and significance of the direct discharge of groundwater into the coastal zone. J. Sea Res., 46, 109-116 https://doi.org/10.1016/S1385-1101(01)00075-2
  5. Burnett, W.C., H. Bokuniewicz, M. Huettel, W. S. Moore and M. Taniguchi. 2003. Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66, 3-33 https://doi.org/10.1023/B:BIOG.0000006066.21240.53
  6. Charette, M.A., K.O. Buesseler and J.E. Andrews. 2001. Utility of radium isotopes for evaluating the input and transport of groundwater-derived nitrogen to a Cape Cod estuary. Limnol. Oceanogr., 46, 456-470 https://doi.org/10.4319/lo.2001.46.2.0456
  7. Cho, J.S., J.K. Ahn, H.C. Kim and DW. Lee. 2004. Radon concentrations in groundwater in Busan measured with a liquid scintillation counter method. J. Environ. Radioact., 75, 105-112 https://doi.org/10.1016/j.jenvrad.2003.06.002
  8. Corbett, D.R., J.P. Chanton, W.C. Burnett, K. Dillon, C. Rutkowski and J. Fourqurean. 1999. Patterns of groundwater discharge into Florida Bay. Limnol. Oceanogr., 44, 1045-1055 https://doi.org/10.4319/lo.1999.44.4.1045
  9. Elhatip, H. 2003. The use of hydrochemical techniques to estimate the discharge of Ovacik submarine groundwater springs on the Mediterranean coast of Turkey. Envrion. Geol., 43, 714-719 https://doi.org/10.1007/s00254-002-0668-y
  10. Freeze, R.A. and J.A. Cherry. 1989. Ground-water. Prentice-Hall, Inc. Eaglewood Cliffd, New Jersey, 1-604
  11. Froelich, F.N., G.P. Klinkhammer, M.L. Bender, N.A. Luedtke, G.R. Heath, D. Cullen, P. Dauphin, D. Hammond, B. Hartman and V. Maynard. 1979. Early oxidation of organic matter in pelagic sediments of the easthem equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta, 43, 1075-1090 https://doi.org/10.1016/0016-7037(79)90095-4
  12. Gooddy, D.C., J.W. Clay and S.H. Bottrell. 2002. Redox-driven changes in porewater chemistry in the unsaturated zone of the chalk aquifer beneath unlined cattle slurry lagoons. Applied Geochem., 17, 903-921 https://doi.org/10.1016/S0883-2927(02)00055-0
  13. Hwang, D.W., Y.W. Lee and G. Kim. 2005a. Large submarine groundwater discharge and benthic eutrophication in Bangdu Bay on volcanic Jeju Island, Korea. Limnol. Oceanogr., 50, 1393-1403 https://doi.org/10.4319/lo.2005.50.5.1393
  14. Hwang, D.W., G. Kim, Y.W. Lee and H.S. Yang. 2005b. Estimating submarine inputs of groundwater and nutrients to a coastal bay using radium isotopes. Mar. Chem., 96, 61-71 https://doi.org/10.1016/j.marchem.2004.11.002
  15. Kelly, R.P. and S.B. Moran. 2002. Seasonal changes in groundwater input to a well-mixed estuary estimated using radium isotopes and implications for coastal nutrient budgets. Limnol. Oceanogr., 47, 1796-1807 https://doi.org/10.4319/lo.2002.47.6.1796
  16. Kim, G. and D.W. Hwang. 2002. Tidal pumping of groundwater into the coastal ocean revealed from submarine $^{222}Rn$ and CH4 monitoring, Geophys. Res. Lett., 29, 2002GL015093 https://doi.org/10.1029/2002GL015093
  17. Kohout, F.A. 1966. Submarine springs: a neglected phenomenon of coastal hydrology. Hydrology, 26, 391-413
  18. Krest, J.M., W.S. Moore, L.R. Gardner and J.T. Morris. 2000. Marsh nutrient export supplied by groundwater discharge: Evidence from radium measurements. Global Biogeochem. Cycles, 14, 167-176 https://doi.org/10.1029/1999GB001197
  19. Lee, J.M. and G. Kim, 2006. A simple and rapid method for analyzing radon in coastal and ground waters using a radon in air monitor. J. Environ. Radioact., 89, 219-228 https://doi.org/10.1016/j.jenvrad.2006.05.006
  20. Lee, G.W. and H.S. Yang, 1998. Chemical Oceanography. Chung-Moon Gak, Seoul, 1-332
  21. Li, L., D.A. Barry, F. Stagnitti and J.-Y. Parlange. 1999. Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resour. Res., 35, 3253-3259 https://doi.org/10.1029/1999WR900189
  22. Michael, H.A., A.E. Mulligan and C.F. Harvey. 2005. Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature, 436, 1145-1148 https://doi.org/10.1038/nature03935
  23. Moore, W.S. 1996. Large groundwater inputs to coastal waters revealed by $^{226}Ra$ enrichments. Nature, 380, 612-614 https://doi.org/10.1038/380612a0
  24. Nolan, B.T. and J.D. Stoner. 1995. Nutrients in groundwaters of the conterminous United States 1992-1995. Environ. Sci. Technol., 34, 1156-1165
  25. Park, G.S. 2004. Assessment of the discharge of submarine groundwater and associated chemical constituents from Jeju Island, Korea. Ph.D. Thesis, Pukyong National University, Busan, 1-139
  26. Reilly, T.E. and A.S. Goodman. 1987. Analysis of salt water upcoming beneath a pumping well. J. Hydrol., 89, 169-204 https://doi.org/10.1016/0022-1694(87)90179-X
  27. Robertson, W.D. 1995. Development of steady-state phosphate concentrations in septic system plumes. J. Contamin. Hydrol., 19, 289-305 https://doi.org/10.1016/0169-7722(95)00022-N
  28. Rysgaard, S., P. Thastum, T. Dalsgaard, P.B. Christensen and N.P. Sloth. 1999. Effects of salinity on $NH_{4}^{+}$ adsorption capacity, nitrification, and denitrification in Danish estuarine sediments. Estuaries, 22, 21-30 https://doi.org/10.2307/1352923
  29. Segol, G. and G.F. Pinder. 1976. Transient simulation of saltwater intrusion in southeastern Florida. Water Res. Res., 12, 65-70 https://doi.org/10.1029/WR012i001p00065
  30. Shaban, A., M. Khawlie, C. Abdallah and G. Faour. 2005. Geologic controls of submarine groundwater discharge: application of remote sensing to north Lebanon. Environ. Geol., 47, 512-522 https://doi.org/10.1007/s00254-004-1172-3
  31. Shim, B.O. 2003. Characteristics of hydrodynamic seawater intrusion at the southeastern coastal area of Busan, Korea. Ph.D. Thesis, Pukyong National University, Busan, 1-123
  32. Shim, B.O., S.Y. Chung, H.J. Kim, I.H. Sung and B.W. Kim. 2002. Characteristics of sea water intrusion using geostatistical analysis of geophysical surveys at the southeastern coastal area of Busan, Korea. J. Kor. Soc. Soil Groundwater Envrion., 7, 3-17
  33. Simmons, G.M. 1982. Importance of submarine groundwater discharge (SGWD) and seawater cycling to the material flux across sediment/water interfaces in marine environments. Mar. Ecol. Prog. Ser., 84, 173-184
  34. Slomp, C.P. and P.V. Cappellen. 2004. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J. Hydrol., 295, 64-86 https://doi.org/10.1016/j.jhydrol.2004.02.018
  35. Taniguchi, M., W.C. Burnett, J.E. Cable and J.V. Turner. 2002. Investigation of submarine groundwater discharge. Hydrol. Process., 16, 2115-2129 https://doi.org/10.1002/hyp.1145
  36. Tissen, H. 1995. Phosphorus in the Global Environment, Transfers, Cycles and Management. SCOPE, Vol. 54. Wiley, New York, 1-462
  37. Weiskel, P.K. and B.L. Howes. 1992. Differential transport of sewage-derived nitrogen and phosphorus through a coastal watershed. Environ. Sci. Technol., 26, 352-360 https://doi.org/10.1021/es00026a017
  38. Zanini, L., W.D. Robertson, C.J. Ptacek, S.L. Schiff and T. Mayer. 1998. Phosphorus characterization in sediments impacted by septic effluent at four sites in central Canada. J. Contamin. Hydrol., 33, 405-429 https://doi.org/10.1016/S0169-7722(98)00082-5
  39. Zektzer, I.S., V.A. Ivanov and A.V. Meskheteli. 1973. The problem of direct groundwater discharge to the seas. J. Hydrol., 20, 1-36 https://doi.org/10.1016/0022-1694(73)90042-5

Cited by

  1. 부산 해안지역의 물의 라돈 농도와 지하수 유출 특성 vol.16, pp.5, 2011, https://doi.org/10.7857/jsge.2011.16.5.053