
컨텍스트 기반의 웹 애플리케이션 설계 방법론

Context-based Web Application Design

박진수(Jinsoo Park)* *

본 연구는 20皿년도 한국학술진흥재단의 지원에 의하여 수행되었음(KRF-2004P41-B00154). 본 연구의 중간 결
과물은 한국학술진흥재 단의 규정 에 의 거 하여 한국경 영 정 보학회 2005추계 국제 학술대 회 제 주도) 에 서 발표하였음

* 서울대학교 경영전문대학원/경영대학 조교수

초 록

웹 기능의 향상과 웹 관련 기술의 발전, 레거시 시스템과의 통합 필요성 증대，자주 변하는 웹 콘텐츠와 구조

등으로 인하여 웹 애플리케이션을 개발하고 관리하는 일이 과거보다 훨씬 더 복잡하게 되었다. 그러나 이러한 다

양한 요인들을 고려하는 포괄적인 웹 애플리케이션 설계 방법론은 아직 존재하지 않고 있다. 따라서 본 연구에서

는 이러한 요인들을 고려한 컨텍스트 기반의 웹 애플리케이션 설계 방법론을 제시하고자 한다. 본 연구에서 제시

하는 방법론에서는 웹 정보를 전달흐｝는 메커니즘에 따라 구분되는 9 종류의 웹 페이지 형태와 웹 페이지 간의

다양한 의미 관계를 정의하는 7 종류의 링크 형태 및 설계 과정 중에 사용되는 여러 종류의 컴포넌트 역할을 구

별하는 소프트웨어 컴포넌트 형태 등 다양한 종류의 모델링 기법들을 소개하고 있다. 뿐만 아니라 이 방법론은

'콤펜디엄(compendium)' 이라 불리는 일단의 관련된 정보 클러스터들로 이루어진 독창적인 웹 애플리케이션 모델

을 사용하고 있다. 하나의 콤펜디엄은 주제(theme), 컨텍스트 퍼］이지, 링크 및 컴포넌트로 구성된다. 이러한 접근

방법은 모듈 방식의 설계에 유용할 뿐만 아니라 항상 변하는 웹 애플리케이션의 콘텐츠와 구조를 관리하는데도

도움이 된다. 본 연구에서 제시한 방법론은 의미적으로 응집력이 있고 구문적으로 느슨히 결합된 유연한 웹 디자

인 산출물을 생성하는데 도움이 될 것이다.

ABSTRACT

Developing and managing Web applications are more complex than ever because of their growing ftmctionalities,
advancing Web technologies, increasing demands for integration with legacy applications, and changing content and
structure. All these factors call for a more inclusive and comprehensive Web application design method. In response, we
propose a context-based Web applicatkm design methodology that is based on several classification schemes including
a Webpage classification, which is useful for identifying the information delivery mechanism and its relevant Web
technology; a link classification, which reflects the semantics of various associations between pages; and a software
component classification, which is helpful for pinpointing the roles of various components in the course of design. The
proposed methodology also incorporates a unique Web 叩plication model comprised of a set of information clusters
called compendia, each of which consists of a theme, its contextual pages, links, and components. This view is useful
for modular design as well as for management of ever-changing content and structure of a Web application. The
proposed methodology brings together all the three classification schemes and the Web 叩plication model to arrive at a
set of both semantically cohesive and syntactically loose-coupled design artifacts.

Keywords : Web Application Design Methodology, Compendia, Access Scope, Link Types, Page Types

112 한국전자거래학회지 제12권 저】2호

1. Introduction

Few people would disagree that the Web has

become a major platform for complex and demanding

mteiprise applications in many domains, but many

would agree that a vast majority of these applications

have been being developed off the developer s head in

an ad-hoc fashion, contributing to problems cf user

disorientation, content management maintainability, and

quality [1, 1이. For Web applications to become a

successful business application model however, they

should be designed in the way that meets its functional

requirements as well as nonfunctional ones such as

usability, extendMity, and content manageability [21,

29]. In the recent years, there have been some

developments towards addressing the gaps and the

requirements [3, 9, 17, 29]. Although they have their

own merits, they glossed over the differentiating

properties of Web applications. They also appear to

ignore incorporating everadvancing Web programming

specifications into their studies, most notably interface

rendering mechanism that inevitably involves simple yet

often complex interaction between the tiers of the

application

Deploying Web applications are often required to be

int^rated with exusting heterogeneous systems [9, 10].

Companies should be able to leverage and extend

existing critical business systems directly to customers,

employees, suppliers, and distributors via the Web to

improve time to market and reduce the cost of

development and deployment This implies that we

아!。uld take into account the existing applications during

the course of Web application design. One of the

emerging technologies is the concept of Web services

that may serve as a middleware for the integration of

Web applications with legacy systems (eg, [8], [16]).

Moreover, everchanging content of Web applications

demands for e&jtive content management from the

outset of thar development [13]. The term “content”

in this paper means core deliverables, not including

layout styles, and other presentational enhancements.

As Fingar [9] suggests, content management is equally

important as developing an application. Indeed it is

believed that the Web application should always be

'under construction， in terms of its content,

presentation, and stmctuie The evolving nature of Web

applications inevitably involves updating the structure

and presentation of the Web applications. This is

particularly true for the Web applications for general

public because cf the ill-dAed md users, and yet,

their changing information needs and preferences.

Traditionally, various process modeling techniques, such

as use case driven, modeling [18, 19] and data flow

diagramming [6, 12], and design heuristics, such as

loose-coupling and ti^it-coheaon, have been utilized as

a means to cope with such dynamicity and reusability

issues. They can equally apply to Web application

development process-that is, by identifying all the

business logic as loosely coupled, tightly cohesive

separate modules for the target appHcation domain and

then by visualizing facade, workflow, and rules of

individual business logic using the logic elements

including pages, links, and componmts.

Following that wisdom, we should model a Web

application as a collection of both semantically tight-

cohesive and syntactically loose-coupled 시usters of

information. A semantically tight-oohesive information

cluster can be obtained by assembling only highly

relevant content around a given subject Although

semantically tight cohesiveness warrants syntactically

loose-coupled information clusters, the latter can be

fortified by parsimoni이is use of hyperlinks between

information dusters based on natural flow of logic and

ihythm of content

Although the literature on Web application design is

vast, the majority is centered on one or two aspects of

Web application development. For example, the

Relationship Managem^t Methodology [17] focuses on

static Web ate design, and the work by Conallen [3]

has a focal point on the functional aspect Yet another

study describes a higher-level integration of an e~

commerce application with existing non-Web

applications [9]. However, little research has been done

on a comprehensive design method. The primary goal

of this study is to provide a 'sustainable* methodology

for Web-based application design. In response, we

propose a context-based Web application design

method, which is founded on several classification

schemes including： (1) a Web page classification, which

is useful for identifying the information delivery

mechanism and its relevant Web technology； (2) a

link classification, which reflects the semantics of various

links； and (3) a software component classification,

which is helpful for pinpointing the roles of various

components in the course of design. The method is also

based on a unique view the Web application as a

set of semantically and syntactically cohesive

information groupings called compendia, each cf which

consists of a theme or a subject, its contextual pages,

and their contextual links. This view is useful for

managing the evolving Web application. The method

brings all together the classification schemes and the

unique view to arrive at a set of design specifications.

In the next section, we present a literature review on

Web application design principles followed by the Web

컨텍스트 기반의 웹 애플리케이션 설계 방법론 113

application design model in which application

architecture and design primitives will be explained in

detail After the foundational concepts, the main part of

the proposed methodology including requirements

gathering, analysis, and design will be described The

paper concludes with major contributions and

suggestions for future research.

2. Design Principles

There are several fundamental issues in designing

Web applications. To get some useful insights into the

design o£ Web applications, this section reviews previous

studies on Web application development focusing on

design principles.

The first group of design issues is related to

identifying, organizing, and managing information

requirements of a target Web application. It is well

recognized that user information needs should be

thoroughly analyzed prior to developing an efifective

application [2]. Unlike the user of conventional

applications, however, the user of public Web

applications is not clea*ly defined because they are

general public This could make it difficult to apply

conventional requirements gathering techniques such as

interviews and may require designers to have deep

knowledge about the users of the target Web

application to provide comprehensive, up^to-date, and

evolving content Considering the above constraint it

seems natural that most cf the previous studies on

design center on content structuring and its presentation

to the user with minimal attention to gathering user

information requirements (eg, [17]). Although a recent

method proposed by Conallen [3] has suggested a

114 한국전자거래학회지 제12권 제2호

gathering technique based on the use case approach

[18], it basically assumes that the target application s

users (and actors) are well defined. This implies that

the method by Conallen [3] is more useful for Web

applications that have dearly-defined end users.

The second set of issues is related to presenting

^fective navigational cues to the user [14, 13 22, 30],

oflfering semantically cohesive content, and creating a

syntactically loose-coupled structure for better user

comprehension [11, 35, 36]. In cognitive science,

comprehension depends on how a user constructs a

mental model based on the visible objects and their

semantic relations [37]. This implies that semantically

cohesive and syntactically loose-wupled themes require

less effort in modeling, and hence increase the

comprehensibility cf the user [35, 36]. In the modeling

process, coherence has a positive influence while

cognitive overhead has a negative influence on

compi^iension [4, 35, 36]. For example, a theme is

coheimt if a user can construct a mental model that

corresponds to facts and relations in a real world [20丄

The process of a mental model construction involves

two types of coherence* local and global coherence； The

former is to trees what the latter is to a forest Local

cohemioe enables a user to relate pieces of information

locally while global coherence leads the user to a

conclusion based on the set of local relations [37]. On

the other hand cognitive overhead is “the additional

eflbrt and concentration necessary to maintain several

tasks or trails at one time" ([4], p. 40). This might be

inevitable due to the limited capacity of human

information processing [25].

These previous studies about Web application

development provide some usdul design principles. First

cf all, a Web application should be designed in a way

that reduces cognitive overhead, which is primarily

related to user disorientation and user-interface

adjustments [24]. Second, to provide users with an

effective navigation, a Web application should be

characterized by (1) higher local coherence, i.e.,

providing appropriate indication of semantic

relationships between contextual pages through careful

use of hyperlinks within a given information cluster, (2)

higher global coherence, ie, providing adequate overview

by aggr^ating contextual pages into a cohesive and

loosely coupled information cluster, and (3) effective

navigational facilities, i.e., providing support for

navigation with respect to direction (breadth) and

distance (depth) within a cluster as well as across

clusters [36].

3. The Design Model

This section explains the fundamentals of the

proposed methodology, including design architecture,

page classification, component classification, compendium

and context, and link classification.

3.1 Web Application Architecture

Web application architecture is important because it

determines actual level of application performance,

resource utilization, and maintainability. Like many

other applications, Web applications begin with logical

architecture and then move on to physical architecture.

Logical architecture is based on a factoring of the

application into logical layers by functions, while

physical architecture is an actual implementation cf the

logical architecture. Physical architecture depends on

컨텍스트 기반의 웹 애플리케이션 설계 방법론 115

implementation strat^y and technological constraints.

In this paper, we focus on logical architecture as shown

in Fig. L The logical architecture consists of

presentation, business, data access, and data layers.

The presentation layer includes everything spedfic to

the user interface. It isolates the rest cf the application

from changes to the presentation layer. This layer

would be implemented as HTML, graphics, style

languages, and others like MIME documents. The

presentation layer does all its work through calls to the

business layer.

Business layer includes business logic that is deeply

integrated from the user inter阻oe to the data store

rather than being contained solely within a package of

code. The breadth cf business logic can be addressed

with three cat^ories： business facades, workflow, and

business rules. Business facades are interfaces that

expose business services to consumers through the

presentation layer while hiding implementation details.

Workflow is a sequence of steps that involve state

transformations. For example, business logic governing

the sequence of steps of an order-from shopping cart to

subtotal tax, shipping, and grand total calculations, to

credit card authorization, to packaging and shipping, to

payment-is wo과田ow. Business rules include logic

controlling the implementation of autonomous

transactions, sudi as rules that limit acceptable data

values and conditions where data may be accessed.

The business layer could be designed with only a Web

server or a combination of a Web server and an

application server. In the fbrmer case, a Web server

alone provides the Web application s fiinctionaHty. It

takes a request and passes it to a server-side program

that handles the request The server-side program looks

up, say, the pricing information from a data store and

uses the retrieved information to formulate the HTML

response. The latter case resembles the former case in

that the Web server still delegates the response

generation to a server page However, the business k威c

for the pricing Icnkup is now put on the application

Fig. 1. Logical Architecture for the Methodology

H6 한국전자거래학회지 제12권 제2호

server. We stick with the more general business layer

design (ie, business layer with two server sub-layeis).

The business layer would be implemented as reusable

componaits and server pages.

The data access layer supports all data access

requirements of the business layer and includes all

components used to access data Data access interfaces

simplify data access by hiding implementation details.

The data access layer can also isolate the rest cf the

application from changes to the data store. The data

layer includes data and data store software, including

relational databases, e-mail stores, message queues, and

directozy services. Database may be comprised of

catalog data, customer account data, order data, and

session state data for an e-commerce application.

3.2 Page Classification

When we browse a Webpage, in generaL we click on

a link that is connected to the Webpage. At this

moment, one cf the two general Webpage rendering

processes is involved depending on 나冷 page type*

request/response and request/execution/response

sequences. If the requested page is either a pure

HTML page or any other MIME documents (ag., a

PDF docummt), the server simply responds with the

requested page. This kind of page is called a static

page whose exact content has already been determined

by the page author at some time before any request

for the page is made. Regardless of who requests the

page and when and how the request is made, the

content and appearance is always the same. In

addition, depending on whether a static page contains a

data capturing fbnn (eg, an HTML form), it is called

either an interactive or a non-interactive page. In some

cases, a Webpage s behavior is governed by a dient­

side control elemait such as a style sheet or a client­

side script which is called a client preprocessor page.

On the other hand, a dynamic page is generated on

request by a page called a server page Evm thougti

there are two difierent ways of generating a dynamic

page-client-side and server-side models-we focus on the

latter model due to some drawbacks of the former,

such as poor security and slow download. Upon

execution of a server page, a Web server returns an

updated vemon of the same server page, or possibly on

some occasions, a separate second page to the

presentation layer. A server page returning updated

itself is called the interlayer server page because it

directly spans over the business layer and the

presentation layer. Alternatively, a server page

delegating a final response to a different page by

passing a data string or state infonnation is called the

withinlayer server page. There is a mixed case, ie, a

server page could be a combined form of the interlayer

and within layer server pages. For example, a server

page could return a data capturing form generated by

form generation logic in the page and write the received

data via the form to a data store, and finally redirect

the user to a difierent page with or without a data

string or state information if the writing is successfijl

This sort cf server page is called the hybrid server

page. Just like a static page, a dynamic page may or

may not include a dynamically generated data

capturing form. In addition, some common part of

business logic (eg“ data access specification) is often

implemented as a preprocessor page for the given server

page. This type of page is called a server preprocessor

page.

Based on the above page types, let us consider a

컨텍스트 기반의 웹 애플리케이션 설계 방법론 117

simple example. A user authentication process could

involve the following pages： a login, page (La, a static

interactive page on the presentation layer), a style sheet

page (ie, a client preprocessor page on the presentation

layer), a form validation script page (ie, another client

preprocessor page on the presentation layer), a login

verification page (La, a withinlayer server page on the

business layer), an indude pag跋 specifying an access to

login information stored in a data store (ia, a server

preprocessor page on the business layer), and a

confirmation page (诅 an inter也 yer server page on the

business layer from which a non-intecactive dynamic

page is derived for the presentation layer). Fig. 2 shows

the page classification, divided into two broad cat^ories

ea산! cf whidi is comprised cf several context page types.

3.3 Compon허it ClassMcatlon

The Web is becoming a critical business computing

platform as oi^anizations move their everyday tasks to

the Web. The migration could begin with id^itifying

legacy applications services, and data for a certain form

of integration [10]. One way is to make the core

business processes running on the l^acy applications or

third-party software components available for a Web

application by object wrapping or Web services [8, 9, 16].

In a Web application, software components are

called during execution of relevant code inside a page

They provide various services to the calling page, such

as data access and file manipulation, to eventually

render information to end users. They can be called

from the presentation or business layer. The proposed

methodology, thenrfbre, explicitly takes components into

account in four context component types： (1)

Presentation layer components include browser

components (eg, components available throv^h Internet

Explorer Administration Kit) as well as operating

system components (eg, XML Document Object). (2)

Webserver layer components are provided by Web

server software and its related technologies such as

Fig. 2. Page Classification

118 한국전자거래학회지 제12권 제2호

SMTP for e-mail (3)Appserver layer components are

those related to workflow and business rules. They

could be newly developed, be available from existing

business applications, or be purchased from third-parties.

⑷ Data access layer components support all data

access requirements of the business layer (eg, ODBC,

OLEDB or JDBC). These components are defined in

the business and data access layere during the design

phase. Note that we rule out any components triggered

automatically such as plug-ins or a MIME application

because the access to such components is implied by

semantics of the corresponding design element In other

words, we consider only the access to components that

requires explicit calls in coding design

34 Link Classification

A link is an associative connection between Web

application elements. Conveisely, an anchor identifies

the precise endpoint (述 a link. It can be understood in

terms of both semantic and syntactic context For

example, if information is presented in a sequence of

pages, the links between the pages play syntactic roles.

If a dick on a link causes user data to be stored in a

data store via a server page, it plays both semantic

and syntactic roles because it passes the data to the

server page (ie, passing data has semantics that can

be interpreted as a specific instruction), which in turn

triggers a data access component (te., syntactically

associate the two elements, the server page and the

component). Accordingly, we classify the link into sevm

context link types based on their semantic and

syntactic context： anchor link ((a)), directive link

(〈d〉)，call link (〈c〉)，build link ((b)), enjoin link

(〈e〉)，form link (①)，and intermediate link (〈i〉).

Note that a links does not always mean a hyperlink

created by the anchor tag (ie,〈a〉)of the HTML It

could be an event as a form of link that triggers the

generation of a dynamic page or a link denoting a

redirection.

The anchor link type is a ^generic' hyperlink created

by the anchor tag. A bookmark could be considered to

be an anchor link type. The directive link type directs

a browser or a server to apply a specific setting to

either a client preprocessor page or a server preprocessor

page For example, a page may contain a directive

that instructs a brovreer to apply a style sheet to the

page. The call link type is used to trigger a component

from a Web page. The build link type connects either

an interlayer server page or a hybrid server page to a

dynamically-derived page~that is, it applies to the case

where a server page dynamically produces a page for

the presentation layer. A good example is a link to a

server page that generates a billing statement upon

completion of an order transaction Unlike the bufld

link type, the enjoin link type diiwts a withinlayer

server page to request a diflferent page. During the

redirectioru a server page normaKy passes a data string

or state infomnation to the redirected page The form

link type is used for a connection between an

interactive page and a server page to process data

submitted by a data capturing form. Finally, the

intermediate link type is a placeholder used during the

analysis phase. It will be replaced with one of the six

other link types during the design phase.

3.5 Compendium and Context

A Web application can be viewed as a collection of

information dusters Highly cohesive and loosely coupled

clusters can make change management easier [9, 28]. A

resulting semantically cohesive and syntactically locee-

coupled information cluster is called a compendium,

which has the following characteristics * (1) it is

comprised of one or more context pages, zero or more

context components, one or more context links, and

zero or one theme page； (2) the theme of a

compendium is also its name； (3) the tight semantic

cohesiveness and loose syntactic coupling of a

compendium are achieved by connecting context pages

and components necessary to complete a business

activity via context links around the theme of the

compendium. Fig. 3 shows a view of a Web

application in terms of compendium and context

elements. The theme page is optional and could be any

presentation layer page types excluding the client

preprocessor page

4. Methodology

The proposed Web application design methodology

primarily consists of analysis and design phases (see

Fig. 4). We will also provide some general ideas for the

requirements gathering and implementation phases.

컨텍스트 기반의 웹 애플리케이션 설계 방법론 119

4.1 Requirements Gathering

As mentioned earlier, the users of the public Web

applications are vaguely d^ned. This may hamper the

requirements gathering process. We suggest a

requirements gathering idea that could mitigate the

difficulty. The Internet was originally intended to grow

on open standards and open sources. This has

inevitably resulted in the relatively lower barriers to

imitation [23]. Although the rules are changing as more

and more Internet-related patents and legal battles are

looming [27], getting ideas from existing Web

applications would be acceptable behavior. There are

numerous existing Web ste, which are gradually

becoming parts of people s lives. This implies two

things： (1) the vast number of currently miming Web

applications could provide designers with the inspiration

for gathering requirements； and (2) they may also

provide designers with clues for "sustainable"

requirements because the deployed Web sites have

evolved over time and been massively tested with real

users.

Therefore, designers might consult similar Web sites

to leam what should be the essential content for the

application. This sort of technique may be called

Fig. 3. Compendium and Context View

120 한국전자거래학회지 제12권 저〕2호

'inspired assimilatioiL'' It co미d have some advantages

over a simple dependence on designers' knowledge

and/or conjecture. First they could identify relatively

complete requiremmts if the consulted Web sites are

fai이y stable. Second, they could identify the

requirements that have been widely accepted This

would make it much easier to find the application­

specific requirements once designers have recognized the

general requirements. The suggested idea could be

augmented by the modd-based approach [33, 34]. Its

goal is to construct application models that show the

structure, processes, and resources of a business as

simply and directly as possible. Based on the approach,

developers may be able to gather requirements by

applying the conventional information gathering

techniques (eg” [2]) to those who are directly involved

in the business processes and practices. Altho闻i they

may not be the direct users of the target application,

designers could at least get some insights into

Tequirements gathering.

4.2 Analysis

Analysis is the process of examining the requirements

and developing the blueprint of an application to be

built, which manifests hi^ier global and local coherence；

It begins with organizing the themes into hi^ier-level

hierarchies, which are, then, gradually refined into loweL

level details. Complexity frequently takes the form of a

hierarchy, which is a major facilitating factor enabling

us txD understand and describe complex objects and

their parts [5, 32]. The following subsections illustrate

Fig. 4. Context-based Web Application Design Process

컨텍스트 기반의 웹 애플리케이션 설계 방법론 121

the analysis process.

4.2.1 Organizing Themes

First of all it is possible for a target Web application

to have one or more domains (sub-applications). For

example, an online academic conference manager

application may consist of three domains： Author,

Administration, and Conference information domains.

One of them is designated as a default domain (eg, in

this paper, the Author domain). Once we clarify

domains, three different tasks are performed on each

domain: (1) identifying top-level themes, (2)

decomposing them into lower-level themes, and (3)

organizing the themes into trees.

A theme can be either descriptive

(factual/definitional) or prescriptive (process/procedural).

A site consisting of only descriptive themes can be

called a Web site because it does not invoke business

logic [7]. By contrast, the prescriptive themes normally

involve workflow and business rules. A Web application

is comprised of both types of themes [3]. Once the

top-level themes are decomposed into lower levels, they

are located by dot separators (e.g.,

Coauthor.Registration) within a tree. On some

occasions, a theme such as 鬼istration" may repeat

in a tree since it is requinsd for both the primary

author and coauthor. In such a case, we simply

repeatedly show it in the tree. Fig. 5 shows a theme

tree for Author domain of the aforementioned

conference manager.

Although an authentication process is an integral

part of many themes, it is implicitly shown in the tree

(eg, Initial Sub(mission) requires authmtication). Note

that the tree shows only themes. It does not show

context pages, components, and link types. It does not

have to be balanced either. Some themes are about a

definition or fact while others are about a process or

procedure, implying that in actual implementation, we

need various context page types. We may continue to

rfne the identified themes for a given domain until

further Tenements are impractical, until a leaf node

can be described by a single page that will be the

same as the theme page. For example, we might have

had the 'Submission Guideline theme under the

Initial Sub(missi0n)' or Final Sub(mission)' theme

in Fig. S We can do so if the guideline is comprised of

more than one page. However, we assume that it is a

single page description, which will be the same as the

theme page of the would-be theme

The overall depth and breadth of the tree depends

Fig. 5. Theme Tree for the Default Author Domain (Default Domain)

122 한국전자거래학회지 제12권 제2호

on the level of complexity and the size of a domain as

well as the implementation strategy. For example, if a

designer wants to minimize the number of clicks, she

might want to make a tree wider rather than deeper.

The d^ree of information granulation afeo determines,

as Fingar [9] points out, the degree of changeability of

structure and pi^saitation. In feet the bieath and the

depth have a trade-off relationship: a deeper

(shallower) structuie would require a narrower (wider)

breadth and vice versa To enhance the degree of

changeability, we should achieve tightly cohesive themes

both at the top level and the subsequent lower levels.

We suggest that a designer come up with a tree as

fine-grained as possible and then combine nodes in line

with her implementation strategy.

4.2.2 Determining Access Scope

This step determines the accessibility to various

themes from within a page in each domain based on

its theme tree. Broader access scope nonnally makes a

page crowded with links. However, it can bring a

shallow structum which may require smaller number of

dicks to get to a destination page. We determine the

three kinds of access scope； the homepage scope,

common scope, and expansion scope.

Ihe homepage scope chooses the number of themes

that will be appeared as links on the (default) domain

homepage It may include all or a subset of the

themes identified in a tree. For example, you may

access all tenes 如m within the homepage if you put

every theme in Fig. 5 onto the homepage. The

common scope is a subset of the homepage scope and

defines a fixed number of themes that will be common

to every page as links, including the (ddault) domain

homepage. The common scope and the homepage

scope could be identical, especially when the application

is small The 堡pans/on scope is affected by the two

previous types of scope For example, let's assume that

the homepage scope and the common scope contain

only Ttimary Author and 'Coauthor' themes. Then,

the expansion scope for the ^Primary Author can

include the themes up to the third. This means that.

I Confeience Info (domain)

二 / J Author.PiiniaivAirtlior
Coiiunoa ----- -；二-''..........................

Scope Author.Coautiior

} Author (A). Piirnar^-Autiior
/ (】PA).Reg每trathm_________

^ExpaiisioiiX 〃[疝RI血！茹瑚瞄m |

縉 * A PA.IxufialSubinission I
Autlior. 脣、I--- 1

MnaiyAutta/ & ApWan編讯Jp자厂「

\ I A PAMamisaiptStatiis ~J
\ A'PAJFiiiaiSiibmission]

尽島?、丿 Auth°r.C°'u鱼°r.Registra1i°n |

Sc 이比 确 Updated氛戒函ig I
Author. 尺... . _

Coaiitlior 丿/ N A.CA.MamiscriptStatiis

Fig. 6. Sample Scope Diagrams for the Default Author Domain

컨텍스트 기반의 웹 애플리케이션 설계 방법론 123

upon deployment, once a user gets to a Primary

Author theme page, she can directly access the loweL

level themes without jumping to another paga Fig. 6

shows each sample of the homepage, common, and

expansion scope for the default 'Author domain. The

'Administration and ^Conference Information are

other domains. They are shown to imply a relation

with the default 'Author domain, although, upon

implementation, a link to the Administration domain

doesn't have to be accessible by non-administratois. In

any case, actual scope determination should take into

account implementation strat^y.

4.2.3 Shaping Higher-Level Compendia

The three types of scope can be called “meta-

themes，'' meaning that each of the homepage and

expansion scope may have a theme page (i.e„

“homepage scope theme page" and individual

“expansion scope theme pages/' respectively). These

two types cf scopes consist of one or more themes,

each cf which may have its own theme paga The

common scope is excluded because it simply represents

a group of themes common, to each page in a givm

domain as well as a subset cf the homepage scope.

Recall that a compendium is comprised of an optional

theme page and one or more context pages, one or

more context links, and zero or more components (see

Fig. ,3). We assume each theme has its own theme

page.

This step shapes high-level comjmdia out the

scope diagrams for each domain In a higher-level

compendium diagram, any page or theme is denoted as

a rectangle with its descriptive name in it There are

several major principles in drawing a higher-level

compendium First, we must take account of only the

presentation layer pages (see Fig. 2) that are

semantically related to a given theme (one exception is

that the compendium diagram for the homepage scope

may show the presentation layer pages and themes

that may not be semantically cohesive). Second, the

diagrams for the expansion scope and “nonTeaf'

themes must show all semantically-related presentation

Homepage scope
theme page

Tenns
of use
page

Privacy
statement

page

Author (A).
PrimaryAuthor

(PA) theme

A.Coauthor
(CA) theme

Contact Style 하leet
page

Fig. 7. Sample Higher-lev이 Compendium Diagrams

124 한국전자거래학회지 제12권 제2호

layer pages and themes. Third, the compendium

diagrams for 'leaf* themes will show only semantically-

related presentation layer pages. It also shows other

related theme pages (not themes) to show a logical

relationship between the leaf theme and other themes

except for the themes in the common scope. Fourth,

we draw diagrams in a top-down maiuw. Th如術,

we first come up with compendium diagrams for

meta-themes. Fig. 7 shows a series of sample

compendium diagrams drawn based on the above

major principles. Note that, in the diagram, the non­

directed lines used to connect pages and themes are not

links, rather they simply show syntactic relationships.

As illustrated in Fig. 7, there is no indication about

page, component and link types. At this stage, we are

just concerned about only themes and the presentation

layer pages. There are several important points

regarding higher-level compendia diagrams. First, they

show only the presentation layer pages (along with

themes). This is necessary to separate "what" from

"how" aspects of an application design. Second, pages

should be as fine-grained as possible in a higher-level

compendium diagram. The fine granulation of pages

gives designers a higher flexibility when they later need

to collapse them into a smaller number of pages based

on their implementation strategies. It also makes

customization and/or reuse easier. Third, if a certain

page must have multiple vei^ions, it can be denoted as

overlapped rectangles. Finally, the order of pages and

themes in a higher-level compendium diagram does not

carry a meaning. It will be taken into account later.

4.2.4 Compendium Refinement

The higher-level compendium diagrams are refined

by incorporating the presentation layer context page

types (La, abbreviated as 'sip' fbr static interactive

pagg sip for static non-interactive paga 'dip' fbr

dynamic interactive page, 'dnp' for dynamic non-

interactive page, and *cpp for client preprocessor page)

and three context Enk types (ie, abbreviated as〈a〉

fbr anchor link,〈d〉for directive link, and〈i〉for

intermediate link). The remaining types of pages, links,

and components will later be taken into account in the

design phase. Note that a link can be unidirectional

bidirectional or conditional It is a design issue whether

we should show a bidirectional link between two pages

Fig. 8. A Refined Compendium Diagram

or let the user press the backward button. A

conditional link is detennined by the context of a given

compendium. In addition, we may have a situation

where two or more pages must be sequentially

accessed. This means that not a]l context pages are

directly linked to the theme page of a compendium.

We will use unidirectional links to cover all the cases

and for orderly linking to the pages and component

Fig. 8 shows a rfned compendium diagram for the

leaf tiieme Initial Submission? Although the higher

level compendium diagram for the theme is not shown

in Fig. 7, the i商ned diagram off the page types and

link types becomes the higher-level diagram.

Regarding Fig. 8, several things should be noted

Fiist, the meta- and non-leaf themes shown in higher^

level compendium diagrams must be shown as theme

pages in the refined compendium diagrams (e.g.,

A.PA.RegistrationThemePage.snp). Any affiliated or

third-party Websites can also be handled in this way.

Second, a style sheet page for a given theme should

appear only once and linked to the theme page to

avoid dutter (eg, Stylacpp). Third, the intermediate

link type is used when the connection between two

pages should be mediated by one or more business

layer pages and/or components. This means that one

or more of the other six link types will replace an

intermediate link in the design phasa For example, we

need more pages and components to accomplish the file

upload task, which implies the intermediate link

between the ' FileUpload.sip， and the

*FileUploadConfimisip， must be replaced with some

other link types (which will be explained in detail in a

later section). The two pages are connected in both

directions because a primaiy author may submit more

than one manuscript Fourth, the "external" theme

컨텍스트 기반의 웹 애플리케이션 설계 방법론 125

page (La, A.PA.RegistrationThemePagesnp) is shown

because a primaiy author should raster after a couple

of failed login attempts. Fifth, we assume that the

LogmErrordip will show an error message as well as

the exact login foim contained in the Xogiasip* page.

As such, the pages and their links are affected by

implementation envisioning and strategy in the

designer s mind.

4.3 Design

The design phase adds more details to the analysis

artifacts cf a Web application to make them realizable

in software by performing the two tasks: (1)

elaborating the refined compendium diagrams with the

consideration of all the page types, link types,

component types, and the application architecture, and

(2) developing the link data dictionary (LDD) that

details data flows along the links across pages and

components as well as application layers.

4.3.1 Elaborating Compendium Diagrams

This step only shows the rendering process of the

presentation layer pages. We d^er the underlying logic

to the next step. Aforementioned, there are five types of

presentation layer pages, six main link types, four

component types, and four business layer page types.

We place all the design primitives in an appropriate

layer cf the application architecture. At this step, we

exclude any related theme pages (e.g.,

APA.RegistrationTheDiePage£np in Fig. 8) as well as

affiliated or third-party Websites. Each design primitive

must be denoted by the corresponding given suffix (eg”

snp* for static non-interactive page) or notations (eg,

〈f〉for form link). Any components that will be

126 한국전자거래학회지 제12권 저〕2호

automatically triggered should be excluded. Fig. 9 shows

an elaborated compendium diagram for Fig. &

4.3.2 Developing Link Data Dictionary

A data dictionary is a central repository cf all data

definitions for the target application There are many

advantages of using it for application development [31].

Developing a link data dictionary for the target

application is the final step before its implementation.

Fig. 10 shows dements of the link data dictionaiy* (a)

a sample link data flow dictionary, (b) a sample

page/component dictionary, (c) a sample link data

structure dictionary, and (d) a sample link data

element descriptions. The link data How dictionary

identifies data flows and structures over the link and

their origins and destinations. The link data structure

dictionary contains detailed definitions for data

structures, which are built on four data relationships

(for more details, see [31], pp.184-204). Data elements

in each data structure are described by its name,

description, alias, length, and value in the link data

element description The page/component dictionary

provides, if necessary, logic summaries fb호 either pages

or software components, especially, application

components.

Fig. 9. An 티 aborated Compendium Diagram

컨텍스트 기반의 웹 애플리케이션 설계 방법론 127

Link data flow name: Email address

Description: Author email address

Source theme: Initial Submission

Source page: ForgotPas sword, sip

Source component: NA
Sink theme: Initial Submission

Sink page: EmailPasswrod.wsp

Sink component: AccessData.dac

Data structures: Email address

(a)

Data structure name: Email address

Description: Author email address

Data elements: Email address

Page name: EmailPassword. wsp

Related component: AccessData.dac

Description: Tasks of &e page here

Data inflow: Email address

Data outflow: ThemePage.snp request

Page logic summary: Shows page logic using
the Structured English.
Pseudocode might be
employed along with
flowchart.

(b)

Data element name: Email address

Description: Author email address

Type: Alphanumeric

Length: 30

Validity 饮成n挖； Valid email address

Special value; WA

9)

Fig. 10. A Link Data Dictionary

5. Discussion

The proposed methodology is an attempt to

incorporate the environmental changes in Web

application development into its design, including

growing functionalities [10], advanong Web technologies

[1], increasing demands for integration with non?Web

applications [9, 10], and everchanging content and

structure [9, 13]. Each area of change lends itself to its

own issue. The growing functionality introduces the

issue cf how to separate the "what" from the ’how"

aspects in designing Web applications. Addressing the

issues is our first contribution. The former aspect is

addressed via the requirement gathering and the

analysis phase, while the latter by the design phase.

The proposed classifications cf Web pages, components,

and Enks as well as the concept of the link data

dictionary play critical roles in this s^»aration view. The

presentation layer pages constitute the "what” aspect

because they specify “what information content" should

be delivered to the user. The business layer pages and

components along with the link data dictionaiy signify

the ’how" aspect because they represent the logic

behind the rendering process cf the presentation layer

pages. The link types, then, work as 나le glue that

associates the pages and components.

Our second contribution comes from the reflection on

the rapid advances in Web technologies. This raises a

128 한국전자거래학회지 제12권 제2호

different issue of how to incorporate the technology

elements into designing Web applications We address

the issue with the notion of granulation cf Web pages

and components. The concepts cf dynamic pages, server

pages, client and server preprocessor pages, and the four

types of components encompass all the available

technology elements for the design. They enable us to

take into account the various markup languages,

scripting technologies, and component technology in

designing Web applications. Related to the second

contribution is an explicit consideration of core business

processes running on non-Web applications as

components for the integration with Web applications.

Another important issue ensues from the eveL

changing conteit and structure of a Web application.

Those changes inevitably bring up changes in its

navigational structure and presentation [9]. The way cf

managing changes in the structure and presentation

aflfects the degree of the global and local coherence, and

hence, the level of the user cognitive overhead and

disorimtation. Therefora the issue can be reduced to

the matters of 앉obal and local coherence and elective

change management. A higher global and local

cohesnence and its resulting better user comprehensibility

can be achieved by presenting effective navigational

structure [14, 15, 22, 30], while the manageability and

modifiability cf a Web application can be enhanced by

maintaining semantically cohesive content and

syntactically loose^oupled information clusters [35, 36].

In other words, an effective navigational structure

requires an ^fective arrangement of navigational cues

(ie, links) in both global and local levels, while an

efficient change management requires loosely coupled

and tightly cohesive information clusters. Indeed,

"modules'' with those characteristics make it easier to

manage changes [28].

The proposed methodology makes another

contribution by addressing the two critical matter via

the concepts of compendium and access scope. A

compendium is semantically cohesive because it is all

about a theme that is detailed by its context pages,

links, and components. The individual compaidium is

also syntactically loose-coupled because each of them

deals with a diflferent thmie The characteristics cf a

compendium should make it easier to update, add, or

delete pages and links without serious "ripple rffects."

On the other hand, the three types cf access scopes are

usdul tools for mhandng the global and local coherence

because they present the navigational structure given

by the internal and external interconnections of

compendia. Changes in compendia can be easily

reflected by corresponding alterations in the access scope

without affecting the overall level of user

comprehensibility.

The methodology also has implications fbr managers.

It suggests a user information requirements gathering

technique and encompasses the recent environmental

changes in Web application design. This would give

managers insights into what should be involved in a

Web application development project in terms of

information requirements and Web application

infrastnictura The methodology also takes explicitly into

account the integration of Web applications with

existing non-Web counterparts as well as business

partaers， and customers' business processes by allowing

them to be connected to appropriate compendia. This

would 戌ve managers an idea about what core business

processes of non-Web applications, business partners,

and customers should be integrated with the target

Web application.

컨텍스트 기반의 웹 애플리케이션 설계 방법론 129

6. Conclusion

D eveloping a Web application is just beyond

converting documents into markup counterparts. It

involves various Web technologies and often requires

integration with other technologies. It frequently

implements fairly complex logic either through

components or within pages. Moreover, due to an

inherent characteristic of the Web, the size of an

application can grow in(Mnitely. The designers of Web­

based applications seem to get a sizable amount of

pressure on deliv^ing highrateenee and low-eognitive-

overhead applications along with ^sustainable' contents.

As a consequence, developing Web appHcation becomes

complex and time-consuming [10]. The primary goal of

this paper is to provide a * sustainable" methodology

for Web-based application design We conclude with

some remarks on implementation and future research.

As for the implementation, there are several issues

that should be addressed during design. First the

designer should determine appropriate page sizes in

accordance with the intended bieadth and depth of an

application. The decision will lead to a proper

organization of highly-granulated pages identified in the

analysis process. Second, the common scope is

comprised of only themes but can include links to

pages repeating on every Webpage such as 'contact，

page or help' page. Third, although the proposed

methodology seems to be a “waterfalT model an

iterative approach should be employed.

Related to future research, there are several

suggestions. First we assume that software components

are out there； We do not consider component based

application development tasks： building, searching,

customizing, and composing [26]. Developing an

^fective method that deals with the tasks is another

topic. Second, we did not specifically deal with page

layout design issues, which may include identifying

individual content elements, positioning the elements,

determining page sizes, and incorporating other interface

elements. Finally, this paper lacks detailed

implementation and testing procedures. Although, in

most cases, implementing the design specifications

proposed in the methodology would be a

straightforward mapping process, it would be a

complete method provided there are detailed

implementation and testing procedures. Despite these

factoiB, we believe that the method that has been

developed by rigorously applying a number of new

concepts should provide a consistent and manageable

way for Web-based application design.

130 한국전자거래학회지 제12권 제2호

References

[1] Britton, K.H., Y. Li, R. Case, C. Seekamp, A.

Citron, B. Topol, R Floyd, and K. Tracy,

"Transcoding： Extending e-Business to New

Environments^ IBM Systems Journal, Vol 40,

No. 1, 2001, pp. 153-178.

[2] Byrd, T.A., K.L. Cossick, and R.W. Zmud, “A

Synthesis of Research on Requirements

Analysis and Knowledge Acquisition

Techniques,'' MIS Quarterly, VoL 16, No. 1,

1992, pp. 117-138.

[3] Conallen, J., Building Web Applications with

UMh Addison-Wesley, Reading, 2000.

[4] Conklin, J., “Hypertext： An Introduction and

Survey \ IEEE Computer, VoL 20, No. 9, 1987,

pp. 17-40.

[5] Cook, M.A., Building Enterprise Information

Architectures: Reengineering Information

Systems, Prentice Hall, Upper Saddle River,

1996.

[6] DeMarco, T., Structured Analysis and System

Specification, Prentice-Hall, Englewood Cliffs,

1979.

[7] Engelbart, D.C., “Toward Augmenting the

Human Intellect and Boosting Our Collective

IQ," Communications of the ACM, VoL 38,

No. 8, 1995, pp. 30-33.

[8] Ferris, C” and J. Farrell, “What are Web

Services,'' CommunicaHons of the ACM, VoL

46, No. 6, 2003, p. 31.

[9] Fingar, P., ''Component-based Framewg屈 for

E—commerce," Communications of the ACM,

VoL 43, No. 10, 2000, pp. 61-66.

[10] Flurry, G., and W. Vicknair, "The IBM

Application Framework for e-Business,' IBM

Systems Journal VoL 40, No. 1, 2001, pp. 8-24.

*

[11] Fratemali, P., "Tools and Approaches for

Developing Data-intensive Web Applications:

A Survey/' ACM Computing Surveys, VoL 31,

No. 3, 1999, pp. 227-263.

[12] Gane, C„ and T. Sarson, Structured Systems

Analysis, Prentice-Hall Englewood Cliffs, 1979.

[13] Guenther, K., What is a Web Content

Management Solution?'' Online, VoL 25, No. 4,

2001, pp. 81-84.

**

[14] Halasz, F., and S. Schwartz, “The Dexter

Hypertext Reference Model," Communications

of the ACM, VoL 37, No. 2, 1994, pp, 30-39.

[15] Hardman, L., and B. Sharrat, lJsei^centered

Hypertext Design： The Applications of HCI

Design Principles and Guidelines/' in Hypertext

State of the Art, R. Mcaleese and C. Green

(eds.)f Intellect, 1990, pp. 252-259.

*

[16] Huang, Y., and J. Chung, “A Web Services­

based Framework for Business Integration

Solutions? Electronic Commerce Research and

Applications, VoL 2, No. 1, 2003, pp. 15-26.

[17] Isakowitz, T., E.A. Stohr and P,

Balasubramanian, “RMM： A Methodology for

Structured Hypermedia Design,**

Communications of the ACM, VoL 38, No. &

1995, pp. 34-44.

[18] Jacobson, L, M. Christerson, P. Jonsson and

G. Overgaard, Object Oriented Software

Engineering： A Use Case Driven Approach,

Addison-Wesley, Wokingham, 1992,

[19] Jacobson, L, G・ Booch and J. Rumbaugh, The

Unified Software Development Process, Addison

Wesley Longman, Reading, 1999.

[2이 Johnson-Laird, P.N., “Mental Models," in

Foundations of Cognitive Science, M.L Posner

(ed・)，MIT Press, Cambridge, 1989, pp. 469-499.

[21] Johnson, RD., and D. Reimer, "Issues in the

Development of Transactional Web

Applications," IBM Systems Journal VoL 43,

No. 2, 2004, pp. 430-440.

[22] Kahn, P., 아Visual Cues for Local and Global

Coherence in the WWW," Comm unica tions of

the ACM, Vol 38, No. & 1995, pp. 67-69.

[23] Makadok, R., "Can First-Mover and Early-

Mover Advantages be Sustained in an Industry

with Low Barriers to Entry/Imitation?M

Strategic Management Journal Vol 19, No. 7,

1998, pp. 683-696.

[24] Marchionini, G., and B. Schneiderman,

“Finding Facts and Browsing Knowledge in

Hypertext Systems/' IEEE Computer, VoL 21,

No. 3, 1988, pp. 70-80.

[25] Miller, GA, "The Magical Number Seven,

Plus or Minus Two： Some Limits on Our

Capability for Processing Information,The

Psychology Review, VoL 63, No. 2, 1956, pp.

81-97.

[26] Mill, H., F. Mill and A. Mill, "Reusing

Software: Issues and Research Directions/'

IEEE Transactions on Software Engineering,

VoL 21, No. 6, 1995, pp. 528-561.

[27] O' Reilly, T., “The Internet Patent Land

Grab," Communications of the ACM, VoL 43,

No. 6, 2000, pp. 29-31.

[28] Page-Jones, M., Practical Guide to Stmctured

Systems Design, Yourdon Press, Englewood

Cliffs, 1988.

[29] Papazoglou, M.P., and W.V.D. Heuvel,

"Service-oriented D esign and D evelopment

Methodology/' International Journal of Web

Engineering and Technology, Vol. 2, No. 4,

2006, pp. 412-442.

컨텍스트 기반의 웹 애플리케이션 설계 방법론 131

[30] Rivlin, E., R. Botafogo, and B. Schneiderman,

"Navigating in Hyperspace： Designing a

Structure-based Tpolbox/' Communications of

the ACM, VoL 37, No. 2, 1994, pp. 87-96.

[31] Senn, J.A., Analysis and Design of Information

Systems, McGraw Hill New York, 1989.

[32] Simon, H., 'The Architecture of Complexity,"

in Proceedings of the American Philosophical

Society, VoL 106, No. 6, 1962, pp. 467-482.

*

[33] Taylor, D.A., Business Engineering with Object

Technology, John Wiley & Sons, New York,

1995.

[34] Teng, J.T.C., V. Grover and K.D. Fiedler,

“Business Process Reengineering: Charting a

Strategic Path for the Information Age,”

California Management Review, VoL 36, No. 3,

1994, pp. 9-31.

[35] Thuing, M., J.M. Haake and J. Hannemann,

'What's ELIZA Doing in the Chinese Room

Incoherent Hyperdocuments - and How to

Avoid Them?” in Proceedings of the 3th

Annua] ACM conference on Hypertext ‘91, San

Antonio, TX, December 15-18, 1991, pp. 161-

177.

[36] Thuing, M.，J. Hannemann and J.M. Haake,

“Hypermedia and Cognition: D esigning for

Comprehension^ Communications of the ACM,

VoL 38, No. 8, 1995, pp. 57-66.

[37] van Dijk, T.A., and W. Kintsch, Strategies of

Discourse Comprehension, Academic Press,

Orlando, 1993.

132 한국전자거래학회지 제12권 저〕2호

저자소개

박진수

현재

관심분야

(E-mail : jinsoo@snu.ac.kr)

The University of Arizona 경영정보시스템 (경영학박사)

University of Minnesota (Carlson School of Management) 조교수

고려대학교 경영대학 조교수

서울대학교 경영전문대학원/경영대학 조교수

정보시스템모델링, 웹 정보시스템, 온톨로지, 정보시스템 통합,

지식공유, 에 이전트

mailto:jinsoo@snu.ac.kr

