AR AE 7juke] 4 o ZEAlo] A AAl WHE

Context-based Web Application Design
HER 2=(Jinsoo Park)*

= &

2 7% P9 4 B vle $A, AN A2 5] e 3, AF W 9 2K 72
Foz it 4 JfEgelAelde idte Helshe dof i}ﬂic} ¥4 o 3als sgek 2ot ol o
ot 8158 Tejshe 294 4 AEAolA A PHEL o}y EANA &z sl dA & ATelA
£ ot 2algg Teidt AUAE T 4 AEA A PHEE A A & dFeA AN
s i Eoide § ARg Agshs viFFel vtet FEHE 9 F57 & o)A Hehsh @ slo)A 3¢
ookt ojv] FAE AAshe 7 379 =2 gu) L AA AR 3 AMHE oY TR AXUE 4L T
W= 2zEYe) ATVE Jo) §F YT 7Y 22 /PHES st ok B ohie} of WpEL
“FH) 3 (compendium)’ o] 2h B2 Ye] B Hu FH2HE2 o] Fold HPAY § AEFAA I 2Y
& AHgEta ek B FRH YL FAl(thene), AYLE Aolx), Y3 9 HEuER FALG. o A2
WPE-E 2F W AAle) 88 2 oz B Wshs § of Sl 2Rae F2E JeRledE
= %‘4 2 d3A AAZ whEL YnHoz g1l Qo FEACE 23] AP /AR A AR
A AEES YAH 28] € Rolnt

ABSTRACT

Developing and managing Web applications are more complex than ever because of their growing functionalities,
advancing Web technologies, increasing demands for integration with legacy applications, and changing content and
structure. All these factors call for a more inclusive and comprehensive Web application design method. In response, we
propose a context-based Web application design methodology that is based on several classification schemes including
a Webpage classification, which is useful for identifying the information delivery mechanisim and its relevant Web
technology; a link classification, which reflects the semantics of various associations between pages; and a software
component classification, which is helpful for pinpointing the roles of various components i the course of design. The
proposed methodology also incorporates a unique Web application mode! comprised of a set of information clusters
called compendia, each of which consists of a theme, its contextual pages, links, and components. This view is useful
for modular design as well as for management of ever-changing content and stucture of a Web application. The
proposed methodology brings together all the three classification schemes and the Web application model to amive at a
set of both semantically cohesive and syntactically loose-coupled design artifacts.

Keywords : Web Application Design Methodology, Compendia, Access Scope, Link Types, Page Types

£ IFE 2004 gasEl IR l-‘%."ll <J3l 488 51 22 (KRF-2004-041-B00154), € A-+9| 7+ 3
*I’Ez' ks 3}%{%’- o] ol oA Z3RREE 0BFATAREUN(ATE)AA TRAAE
* o AEREE ZFAINRY/AIA 5‘_

112 $FARAHEIA 129 A23

1. Introduction

Few people would disagree that the Web has
become a major platformn for complex and demanding
enterprise applications in many domains, but many
wotld agree that a vast majority of these applications
have been being developed off the developer s head in
an ad-hoc fashion, oontributing to problems of user
disorientation, content management, maintainability, and
quality {1 10]. For Web applications to become a
successful business application model, howevey, they
should be designed in the way that meets its functional
requirements as well as nonfunctional ones such as
usability, extendibility. and content manageability [21,
29]. In the recent years, there have been some
developments towards addressing the gaps and the
requirements (3. 9 17, 29]. Although they have their
own merits, they glossed over the differentiating
properties of Web applications. They also appear to
ignore incorporating ever-advancing Web programming
specifications into their studies, most notably interface
rendering mechanisin that inevitably involves simple yet
often complex mteraction between the tiers of the
application,

Deploying Web applications are often reguired to be
integrated with exusting beterogeneous systems [9, 10].
Companies should be able to leverage and extend
existing critical business systems directly to customers,
employees, suppliers, and distributors via the Web to
improve time to market and reduce the cost of
development and deployment. This implies that we
should take ito account the existing applications during
the course of Web application design. One of the
emerging technologies is the concept of Web services
that may serve as a middleware for the integration of

Web applications with lgacy systems (eg. (8], [16]).

Moareover. everchanging content of Web applications
demands for effective content management from the
outset of their development [13]. The term “content’
in this paper means core deliverablks, not including
layout, styles, and other presentational enhancements.
As Fingar (9] suggests, content management is equally
important as developing an application Indeed, it is
believed that the Web application should always be
“under construction” in terms of its content,
presentation, and structure, The evolving nature of Web
applications inevitably involves updating the structure
and presentation of the Web applications. This
particularly true for the Web applications for general
public because of the ill-defined end users, and yet
their changing information needs and preferences.
Traditionally, various process modeling techniques, such
as uge case driven modeling (18, 19] and data flow
disgrammming [6 12, and design heuristics, such as
loosecoupling and tight-cohesion, have been utilized as
a means to oope with such dynamicity and reusability
issues. They can equally apply to Web application
development process-that is, by identifying all the
business logic as loosely coupled, tightly cohesive
separate modules for the target application domain and
then by visualizing facade. workflow, and rules of
individual business logic using the logic elements
including pages. links, and components.

Following that wisdom, we should model a Web
apphication as a collection of both semantically tight-
cohesive and syntactically loose—coupled clusters of
information. A semantically tight—cohesive information
cluster can be obtained by assembiing only highly
relevant content around a given subject. Although
semantically tight cohesiveness warrants syntactically

loose~coupled information clusters, the latter can be
fortified by parsimonious use of hyperlinks between
information clusters based on natural flow of logic and
thythm of content.

Although the literature on Web application design is
vast, the majority is centered on one or two aspects of
Web application development. For example, the
Relationship Management Methodology [17] focuses on
static Web site design, and the work by Conallen [3]
has a focal point on the functional aspect. Yet another
study describes a higher-level integration of an e
commerce application with existing non-Web
applications [0]. However, little research has been done
on a comprehensive design mmethod. The primary goal
of this study i to provide a “sustainable’ methodology
for Web-based application design. In response, we
propose a context-based Web application design
method, which is founded on several classification
schemes including: (1) a Web page dasdification, which
is useful for identifying the information delivery
mechanism and its relevant Web technology: (2) a
link classification. which reflects the semantics of various
links: and (3} a software component classification,
which is helpful for pinpointing the rles of various
components in the course of design. The method is also
based on a unique view of the Web application as a
set of semantically and syntactically cohesive
information groupings called compendia, each of which
consists of a theme or a subject, its contextual pages,
and their contextual links, This view is useful for
managing the evolving Web application. The method
brings all together the classification schemes and the
unique view to armive at a set of design specifications.

In the next section, we present a literature review on
Web application design principles followed by the Web

HY2E 7|99 g fEeiAol} €4 HHE 113

application design model in which application
architecture and design primitives will be explained in
detail After the foundational conoepts, the main part of
the proposed methodology including requirements
gathering, analysis, and design will be described. The
paper concludes with major contributions and

suggestions for future research,

2. Design Principles

There are several fundamental issues in designing
Web applications. To get some useful insights into the
design of Web applications, this section reviews previous
studies on Web application development focusing on
design principles.

The first group of design issues i3 related to
identifying, organizing, and managing information
requirements of a target Web application It is wel
recognized that user information needs should be
thoroughly analyzed prior to developing an effective
application [2]. Unlike the user of conventional
applications, however, the user of public Web
applications is not clearly defined because they are
general public This could make it difficult to apply
conventional requirements gathering techniques such ag
interviews and may requite designers to have deep
knowledge about the users of the target Web
application to provide comprehensive, up-to-date, and
evolving content. Considering the above constraint. it
seems natural that most of the previous studies on
design center on content struchuring and its presentation
to the user with minimal attention to gathering user
information requirements (eg, [17]). Although a recent
method proposed by Conallen [3] has suggested a

114 @I A2pAA A A 123 Al2s

gathering technique based on the use case approach
(18], it basically assumnes that the target application' s
users (and actors) are well defined This implies that
the method by Conallen [3] is more useful for Web
applications that have clearly-defined end users.

The second set of issues is related to presenting
effective navigational cues to the user [14, 15 22 30],
offering semantically cohesive content, and creating a
syntactically loose—coupled structure for better user
comprehension [11, 35, 36). In cognitive science,
comprehension depends on how a user constructs a
mental model based on the visible objects and ther
semantic relations (37]. This implies that semanticaly
cohesive and syntactically Jooseooupled themes require
less effort in modeling, and hence increase the
comprehensibility of the user {35, 36). In the modeling
process, coherence has a positive influence while
cognitive overhead has a negative influence on
comprehension [4, 35 36]. For exampl, a theme is
ooherent if a user can construct a mental model that
corresponds to facts and relations in a real world [20).
The process of a mental model construction involves
two types of coherence: local and global coherence. The
former is to trees what the latter is to a forest. Local
coherence enables a user to relate pieces of information
locally while global coherence leads the user to a
concusion based on the set of local relations [37]. On
the other hand, cognitive ovethead is ‘the additional
affort and concentration necessary to maintain several
tasks or trails at one time” ([4], p. 40). This might be
inevitable due to the limited capacity of human
information processing [25].

These previous studies about Web application
developiment provide some useful design principles. First
of all a Web application should be designed in a way

that reduces cognitive overhead, which i primarily
related to user disorientation and user-interface
adjustments [24]. Second, to provide users with an
effective navigation, a Web application should be
characterized by (1)} higher local coherence, ie.
providing appropriate indication of semantic
relationships between contextual pages through careful
use of hyperlinks within a given information cluster, (2}
higher global coherence, ie, providing adequate overview
by aggregating contextual pages into a cohesive and
loosely coupled information custer, and (3) effective
navigational facilities, ie. providing support for
navigation with respect to direction (breadth) and
distance {depth) within a cluster as well as across
clusters [36].

3. The Design Model

This section explains the fundamentals of the
proposed methodology, including design architecture,
page dassification, component classification. compendium
and context, and link dassification.

3.1 Web Application Architecturs

Web application architecture js important because it
determines actual level of application performance,
resource utilization, and maintainability. Like many
other applications, Web applications begin with logical
architecture and then move on to physical architecture.
Logical architecture i based on a factoring of the
application into logical layers by functions, while
physical architecture is an actual implementation of the
logical architecture. Physical architecture depends on

implementation strategy and technological constraints.
In this paper, we focus on Jogical architecture as shown
in Fig. 1. The logical architecture consists of
presentation, business, data access, and data layers.

The presentation layer includes everything specific w
the user interface. [t isolates the rest of the application
from changes to the presentation layer. This layer
would be implemented as HTML, graphics, style
languages, and others like MIME docwments. The
presentation layer does all its work through calls to the
business layer.

Business layer indudes business logic that is deeply
integrated from the user interface to the data store
rather than being contained sokly within a package of
code. The breadth of business logic can be addressed
with three categories: business facades, workflow, and
business rules. Business facades are interfaces that
expose business services to consumers through the
presentation layer while hiding implementation details.
Worldlow i a sequence of steps that involve state

Y 2E 7wkl 9 fFe|A)R A WYE 115

trangformations. For example. business logic governing
the sequence of steps of an order-from shopping cart to
subtotal, tax, shipping, and grand total calculations, to
credit card authorization, to packaging and shipping, to
paymeni-is workflow. Business rules include logic
controlling the implementation of autonomous
transactions, such as rukes that Iimit acceptable data
values and conditions where data may be accessed,
The business layer could be designed with only a Web
server or a combination of a Web server and an
application sexver. In the former case, a Web server
alone provides the Web application’ s fimctionality. Tt
takes a request and passes it to a serverside program
that handles the request. The server-side program looks
up, say, the pridng information from a data store and
uses the retrieved information to formulate the HTML
response. The latter case resembles the former case in
that the Web server still delegates the response
generation {0 a server page. However, the business logic
for the pricdng lookup is now put on the application

Presentation Layer

vy !

Business Layer

Appserver layer

Web server layer

y |

Data Access Layer

y 1

Data Layer

Fig. 1. Logical Architectre for the Methodology

116 FIAQAANNEYEA 12 A2E

sarver. We stick with the more general business layer
design (ie. business Jayer with two server sub-layess).
The business layer would be implemented as reusable
components and server pages,

The data access layer supports all data access
requirements of the business layer and includes ali
components used to access data. Data access inferfaces
simplify data access by hiding implementation details.
The data acosss layer can also isolate the rest of the
application from changes to the data store, The data
layer includes data and data store software, including
relational databases, e-mail stores, message queues, and
directory services, Database may be comprised of
catalog data, customer account data, order data, and

session state data for an e-commerce application.

3.2 Page Classification

When we browse a Webpage, in general. we dick on
a link that is connected to the Webpage. At this
moment, one of the two general Webpage rendering
processes is involved depending on the page type:
Tequest/response and request/execution/response
sequences. If the requested page is either a pure
HTML page or any other MIME documents {eg., a
PDF document), the sarver simply responds with the
requested page. This kind of page B called a statie
page whose exact content has already been determined
by the page author at some time before any request
for the page is made Regardkss of who requests the
page and when and how the request s made the
content and appearance is always the same. In
addition. depending on whether a static page contains a
data capturing form (eg. an HTML form). it & calied
either an interactive or a non-interactive page. In some

cases, a Webpage's behavior s govemed by a client-
side contyol dement such as a style sheet or a client-
side seript. which is called a client preprocessor page.

On the other hand, a dynamic page i3 generated on
request by a page called a server page. Even though
there are two different ways of generating a dynanic
page~client-side and server-side models-we focus on the
latter model due to some drawbacks of the former,
such as poor security and slow download. Upon
execution of a server page, a Web server metums an
updated version of the same server page. or possibly on
some occasions, a separate second page to the
presentation layer. A server page retumming updated
itself s called the interlayer server page because it
directly spans over the business layer and the
presentation layer. Alternatively. a server page
delegating a final response to a different page by
passing a data stying or state information i called the
withinlayer server page. There is a mixed case, ie. a
server page could be a combined form of the interlayer
and within layer server pages. For example, a server
page could return a data caphwing form generated by
form generation logic in the page and write the received
data via the form to a data store, and finally redirect
the user to a different page with or without a data
string or state information if the writing s successful
This sort of server page is called the hybrd server
page. Just like a static page, a dynamic page may or
may not include a dynamically generated data
capturing form. In addition, some common part of
business logic (eg. data access specification) is often
implemented as a preprocessor page for the given server
page. This type of page is called a server preprocessor
page.

Based on the above page types. let us consider a

simple example. A user authentication process could
involve the following pages: a login page (ie. a static
interactive page on the presentation layer), a style sheet
page (ie. a client preprocessor page on the presentation
layer), a form validation seript page (ie, another client
preprocessor page on the presentation layer), a login
verification page (ie. a withinlayer server page on the
business layer). an indude page specifying an access to
login information stored in a data store (ie, a server
preprocessor page on the business layer), and a
confirmation page (ie. an interlayer sarver page on the
business layer from which a non-interactive dynamic
page i derived for the presentation layer). Fig 2 shows
the page dassification, divided nto two broad categories
each of which 8 compnised of several context page types

3.3 Component Classification

The Web & becomning a critical business computing
platform as organizations move their everyday tasks to

P 2E 7]gke] §) ol EA)d A WHE 117

the Web, The migration could begin with identifying
legacy applications, services, and data for a certain form
of integration [10]. One way is to make the oore
business processes nunning on the legacy applications or
third-party software components available for a Web
application by object wrapping or Web services [8 9, 16].

In a Web application, software components are
called cring execution of relevant code inside a page
They provide various services to the calling page, such
as data acoess and fille manipulation, to eventually
render information to end users. They can be called
from the presentation or business layer. The proposed
methodology, therefore, explicitly takes components into
account in four context component types: (1)
Presentation layer components include browser
components (eg. components available through Intemnet
Explorer Administration Kit) as well as operating
system components {eg. XML Document Object). (2)
Websarver layer components are provided by Web
server software and its related technologies such as

Static Interactive Page (sip)

Web Pages

Dynamic Interactive Page (dip)

Dynamic Non-interactive Page (dnp)

J
Static Non-interactive Page (snp) J
|
|
]

Client Preprocessor Page (cpp)

Server Preprocessor Page (spp)

Business
Layer Pages

Interlayer Server Page (isp)

Pregentation
Layer Pages

Withinlayer Server Page (wsp) ‘
Hybrid Server Page (hsp) J

Fig. 2. Page Classification

118 FARAAY LA A1z@ A%

SMTP for email (3) Appsarver layer components are
those related to workflow and business nies. They
could be newly developed, be available from existing
business applications, or be purchased from third-parties.
(4) Data access Iayer components support all data
aocess requirements of the business layer (eg. ODBC.
OLEDB or JDBC). These components are defined in
the business and data access layers during the desion
phase. Note that we rule out any components triggered
automatically such as plug-ms or 2 MIME application
because the acoess to such components s implied by
semantics of the corresponding design dement. In other
words, we consider only the access to components that
requires explicit calls in coding design.

34 Link Classification

A link i an assodative connection between Web
application elements. Conversely, an anchor identifies
the precise endpoint of a link. It can be understood in
terms of both semantic and syntactic context. For
example, if information is presented In a sequence of
pages, the links between the pages play syntactic roles.
If a dick on a link causes user data to be stored in a
data store via a server page it plays both semantic
and syntactic roles because it passes the data to the
server page {ie. passing data has semantics that can
be interpreted as a specific instruction), which in tun
triggers a data acoess component (ie, syntactically
associate the two elements, the server page and the
component). Accordingly, we dassify the link mnto seven
context link types based on their semantic and
syntactic context: amchor link ({a)). directive link
(@), call link ({c)), build fink (b)), enjoin link
(), fam link (). and intermediate link (().

Note that a links does not always mean a hypelink
created by the anchor tag (ie. (o)) of the HTML. k
could be an event as a form of fink that triggers the
generation of a dynamic page or a link denoting a
redirection.

The anchor link type is a “generic’ hyperlink created
by the anchor tag. A bookmark could be considered to
be an anchor link type. The dimctive link type directs
a browser or a server to apply a specific setting to
either a client preprocessor page or a $eIver preprocessor
page. For exampk. a page may contain a directive
that instructs a browser to apply a style sheet to the
page. The call link type is used to trigger a component
from a Web page. The build link type connects either
an interlayer server page or a hybrid server page to a
dynamically-derived page-that is. it applies to the case
where a server page dynamically produces a page for
the presentation layer. A good example is a link to a
server page that generates a biling statement upon
completion of an order transaction. Unlike the build
link type, the enjoin link type directs a withinlayer
server page to rmequest a different page. During the
redirection, a server page normaily passes a data string
or state information to the redirected page. The form
link type is used for a connection between an
interactive page and a server page to process data
submitted by a data capturing form. Finally, the
intermediate link type is a placeholder used dwring the
analysis phase It will be replaced with one of the six
other link types during the design phase.

3.5 Compendium and Contoxt

A Web application can be viewed as a collection of
information clusters. Highly cohesive and loosely ooupled

clusters can make change management easier [9, 28] A
resulting semantically cohesive and syntactically loose~
coupled information cluster i called a compendium,
which has the following characteristics: (1) it is
comprised of one or more context pages, zero or more
context components, one or more context links, and
zero or one theme page: (2) the theme of a
compendium s also its name: (3) the tight semantic
cohesiveness and loose syntactic coupling of a
compendium are achieved by connecting context pages
and components necessary to complete a business
activity via context lnks around the theme of the
compendium. Fig. 3 shows a view of a Web
application in terms of compendium and context
elements. The theme page is optional and could be any
presentation layer page types excluding the client

PYeprooessor page.

4. Methodology

The proposed Web application design methodology
primarily consists of analysis and design phases (see
Fig. 4). We will also provide some general ideas for the
requiretnents gathering and implementation phases.

A 2E vinke} §§ o A e)d 4A WHE 119

4.1 Requirements Gatheiing

As mentioned earier, the users of the public Web
applications are vaguely defined. This may hamper the
requirements gathering process. We suggest a
requirernents gathering idea that could mitigate the
difficulty. The Intemet was origihally intended to grow
on open standards and open sources. This has
inevitably resulted in the relatively lower bames to
irnitation [23]. Although the ruks are changing as more
and more Intemetrelated patents and legal battles are
looming [27]. getting ideas from existing Web
applications would be acoeptable behavior. There are
numerous existing Web sites. which are gradually
becoming parts of people s lives. This implies two
things: (1) the vast number of currently running Web
applications could provide designers with the inspiration
for gathering requirements: and (2) they may also
provide designers with clues for “sustainable’
Tequirements because the deployed Web sites have
evolved over time and been massively tested with real
users,

Therefore, designers might consult similar Web siies
to leam what should be the essential content for the
application. This sort of technique may be called

Web
Application

Compendimm

1 § Theme (Name)

? { Theme Page

?:7ero o1 one
+; one or more
*: 7ero or more

|+ | Context Links
™ | Context Components

|
]
|+ | Context Pages |
|
|

Fig. 3. Compendium and Context View

120 FHAAYER) A A12YW A2

“Inspired assimilation.” It could have some advantages
over a simple dependence on designers knowledge
and/or conjecture. First, they could identify relatively
oomplete requirements if the consulted Web sites are
fairly stable. Second, they could identify the
requirements that have been widely accepted This
would make it much easkr to find the application—
specific requivements once designers have recognized the
general requirements. The suggested idea could be
augmented by the model-based approach [33. 34). Its
goal is to construct application models that show the
structure, processes, and resources of a business as
simply and directly as possible. Based on the approach,
developers may be able to gather requirements by
applying the conventional information gathering
techniques (eg. [2]) to those who are directly involved

in the business processes and practices. Although they
may not be the direct users of the target application.
designers could at least get some insights into

requirements gathering,

4.2 Analysis

Analysis is the prooess of examining the requirements
and developing the blueprint of an application to be
built, which manifests higher global and local coherence.
It begins with organizing the themes into higherlevel
hierarchies, which are, then, gradually refined into lower-
Jevel details. Complexity frequently takes the form of a
hierarchy, which & a major facilitating factor enabling
us to undestand and desaibe complex objects and
their parts (5. 32]. The following subsections illustrate

Requirements . ‘ . .
Gathering > Analysis — Design Implementation
-) Elaborating)
Organizing me
Themes — Compendium
J _ Diagrams)
A
-~ ~\ 4 ~
Determining . .
Access Scope Develogmg Link
\ J Data Dictionary
J
y
. 2
Shaping Higher-
\Level Compendia
S

f

Compendium
Refinement

Fig. 4. Context-hased Web Application Design Process

the analysis process.
4.2.1 Organizing Themes

First of all it is possible for a target Web application
to have one or more domains (sub-applications). For
example, an online academic conference manager
application may consist of three domains: Author,
Administration, and Conference information domains.
One of them is designated as a default domain (eg. in
this paper, the Author domain). Once we clarify
domains, three different tasks are performed on each
domain: (1) identifying top-level themes, {2}
decomposing them into lower-level themes, and (3)
organizing the themes into frees.

A theme can be
(factual/definitional) or prescriptive (process/procedural).
A site consisting of only descriptive themes can be
called a Web site because it does not nvoke business

either descriptive

logic {7]. By contrast, the prescriptive themes normally
involve worldlow and business rules, A Web application
is comprised of both types of themes [3]. Once the
top-level themes are decomposed into lower kvek, they
are located by dot separators (eg.
Coauthor.Registration) within a tree. On some

occasions. a theme such as “Registration” may repeat

HYXLE 7)gke] § RFAA I 24 HHPE 121

in a tree since it is required for both the primary
author and coauthor. In such a case, we simply
repeatedly show it in the tree. Fig. 5 shows a theme
tree for Author domain of the aforementioned
conference manager.

Although an authentication process is an integral
patt of many themes, it is implicitly shown in the tree
(eg. Initial Sub{mission} requires authentication). Note
that the tee shows only themes It does not show
context pages, components, and link types. It does not
have to be balanced, either. Some themes are about a
definition or fact. while others are about a process or
procedure, implying that in actual implementation, we
need various context page types We may contihue to
wfine the identificd themes for a given domain untl
further refinernents are impractical, is., untdl a Jeaf node
can be described by a single page that will be the
same as the theme page For example, we might have
had the 'Submission Guideline ‘theme under the
Tnitial Sub{mission)’ or TFinal Sub{mission)’ theme
in Fig. 5 We can do so if the guideline is comprised of
more than one page. However, we assume that it is a
single page description. which will be the same as the
theme page of the would-be theme.

The overall depth and breadth of the tree depends

Reg.: Registration
Manu.: Manuscript
Sub.: Submission

(default domain)

Author

‘ Primary Author Coauthor
Regis- Update Initial Manu. Manu. Final Regis- Update Manu.
tration Reg. Sub. Update Status Sub. fration Reg Status

Fig. 5. Theme Tree for the Default Author Domain (Default Domain)

122 g5 AxA N3 2] A12d 228

on the level of complexity and the size of a domain as
well as the implementation strategy. For example, if a
designer wants to minimize the number of clicks, she
might want to make a tree wider rather than deeper.
The degree of information granulation ako determines,
as Fingar [8) points out. the degree of changeability of
structure and presentation. In fact, the breath and the
depth have a trade—off relationship: a deeper
(shallower) struchare would require a nparrower (wider)
breadth and vice versa. To enhance the degree of
changeability, we should achieve tightly oohesive themnes
both at the top level and the subsequent lower levels.
We suggest that a designer come up with a tree as
finegrained as possible and then combine nodes in line
with her implementation strategy.

4.2.2 Determining Access Scope

This step determines the accessibility to various
themes from within a page in each domain based on
its theme tree. Broader access scope normally makes a

page aowded with links. However, it can bring a

shallow structure, which may require smaller numnber of
dicks to get to a destination page We determine the
three kinds of acoess scope: the homepage scope,
common scope, and expansion scope.

The homepage soope chooses the mumber of themnes
that will be appeared as links on the {default) domain
homepage. It may include all or a subset of the
themes identified in a tree For example, you may
access all themes from within the homepage if you put
every theme in Fig. 5 onto the homepage. The
common seope 15 a subset of the homepage scope and
defines a fixed number of themes that will be common
to every page as links, including the {default) domain
homepage. The common scope and the homepage
soope oould be identical, especially when the application
is small The expansion scope is affected by the two
previous types of scope. For example, ket s assume that
the homepage scope and the common scope contain
only Primary Author and ‘Coauthor themcs Then,
the expansion scope for the Primary Author can
indude the themes up to the third. This means that,

Author Prunary Authos _[

Author. Coauthor

|

Homepage

Scope Conference Info {domain)

l

Adaistration (domain)

|

4 Author (A).PumaryAuthor
(PA)Registration

Expansion APA UpdateRegishation

l

Scope for —————
Anthor. A PA InitialSubnussion J
PrimaryAuthov APA ManuscriptUpdate |

A PA ManusenptStatus

A PA FinalSubmission

Conference Info (dommn) (

Author PnmaryAuthoy

Common
Scope

Author, Coauthor {

Expansion Author.Coauthor Registration [

Scope for
Author.
Comihor

A.CA.UpdateRegistration |

A.CA ManuscriptStatus [

Fig. 6. Sample Scope Diagrams for the Default Author Domain

upon deployment, once a user gets to a ‘Primary
Author theme page, she can directly access the lower-
level themes without jumping to another page Fig 6
shows each sample of the homepage, common, and
expansion scope for the default ‘Author’ domain. ‘The
‘Administzation’ and ‘Conference Information’ are
other domains. They are shown to imply a relation
with the default ‘Author domain. although, upon
implementation, a link to the ‘Administration’ domain
doesn t have to be acoessible by non-administrators. In
any case, actual scope determination should take into
account implementation strategy.

4.2.3 Shaping Higher-Level Compendia

The three types of scope can be called “meta-
themes’ meaning that each of the homepage and
expansion scope may have a theme page (ie,
“homepage scope theme page and individual
“expansion scope theme pages.” respectively). These
two types of scopes oconsist of one or more themes,
each of which may have its own theme page The

W AE slgkel @ AEA)Y AN PHE 123

common scope 5 exchided because it simply represents
a group of themes oommon to each page in a given
domain as well as a subset of the homepage soope
Recall that a compendium is comprised of an optional
theme page and one or more context pages, one or
more context links, and zero or more components (see
Fig. 3). We assume each theme has its own theme
page.

This step shapes high-level compendia out of the
scope diagrams for each domain In a higher-level
compendium diagram, any page or theme is denoted as
a rectangle with its descriptive name in it There are
geveral major principles in drawing a higher-level
compendium. First, we must take account of only the
presentation layer pages (see Fig. 2) that are
semantically related to a given theme (one exception is
that the compendium diagram for the homepage scope
may show the presentation layer pages and themnes
that may not be semantically cohesive). Second. the
diagrams for the expansion scope and “non-leaf’
thernes must show all semantically-related presentation

Homepage scope
Terms Privacy ‘.mﬂm (A) A.Coauthor Contact Style sheet
of use statement | [PrimaryAuthor (CA) theme o e
page page (PA)theme pas P28
Style sheet page Expansion scope for APA Whois PA
theme page page
. APA, APA Initial || APA Update L
A}S)t‘:t?xdsinh‘;sr::pt Manuscript Submission Registration A.PA.;tz:lsetrahon
Update theme theme theme

Fig. 7. Sample Higher-level Compendium Diagrams

124 BTARANRIA A28 A2

layer pages and themes. Third, the compendium
diagrams for “leaf” themes will show only semantically~
related presentation layer pages. It alo shows other
related theme pages (not themes) to show a logical
relationship between the leaf theme and other themes
except for the themes in the common scope. Fourth,
we draw diagrams in a top-down manner. Therefore
we first come up with compendium diagrams for
meta-themes. Fig. 7 shows a series of sample
compendium diagrams drawn based on the above
major principles. Note that, in the diagram, the non-
directed lines used to connect pages and themes are not
links, rather they simply show syntactic relationships.
As flustrated in Fig, 7, there is no indication about
page, component, and fink types. At this stage, we are
st concarned about only themes and the presentation
layer pages. There are several important points
regarding higher-level compendia diagrams. First. they
show only the presentation layer pages (along with
themes). This is necessary to separate “what from
‘how~ aspects of an application design. Second, pages
should be as fiegrained as possible in a higherleve
compendium diagram. The fine granulation of pages

gives designers a higher flexibility when they later need
to collapse them into a smaller number of pages based
on their implementation strategies. It also makes
customization and/or reuse easier. Third ¥ a certain
page must have multiple versions, it can be denoted as
overlapped rectangks Finally, the order of pages and
themes in a higherJdevel compendium diagram does not
carry a meaning. It will be taken into account later.

4.2.4 Compendium Refinement

The highertevel compendium diagrams are refined
by incorporating the presentation layer context page
tvpes (ie, abbreviated as Sip for static interactive
page ‘snp for static non-interactive page ‘dip for
dynamic interactive page, ‘dnp for dynamic non-
interactive page, and ‘cpp for client preprocessor page}
and three context link types (ie, abbmviated as (a)
for anchor link, {d) for directive link, and < for
intermediate link). The remaining types of pages. links,
and components will later be taken into account i the
design phase. Note that a link can be unidirectional
bidirectional, or conditional It is a design issue whether
we should show a bidirectional Iink between two pages

ForgotPassword.sip

Style.cpp y :
<A <1
/'y a v
“d> A PA InitialSubmission
£ ThemePage.snp ValidFile.cpp UploadEzror.dnp
~, . 1
\ < e g <i>
APAReg |2 11 oginsip 12 FileUpload.sip <a>
ThemePage.snp c
<i> <> <>
L 4 y
LoginEsror.dip FileUploadConfirm sip

Fig. 8. A Refined Compendium Diagram

or let the user press the backward button. A
conditional link is determnined by the cantext of a given
compendium. In addition. we may have a situation
where two or more pages must be seguentially
accessed. This means that not all context pages are
directly linked to the theme page of a compendium.
We will use unidirectional links to cover all the cases
and for ordedy linking to the pages and component.
Fig 8 shows a refined compendium diagram for the
leaf theme ‘Initia] Submission. Although the higher-
level compendium diagram for the theme is not shown
in Fig. 7, the refined diagram off the page types and

Regarding Fig. 8 several things should be noted,
First, the meta- and noneaf themes shown in higher-
level compendium diagramms must be shown as theme
pages in the refined compendium diagrams (eg.
APA RegistrationThemePagesnp). Any affiliated or
third-party Websites can also be handled in this way.
Second, a style sheet page for a given theme should
appear only once and linked to the theme page to
avoid dutter (eg. Stylecpp). Third, the intermediate
link type i5 used when the commection between two
pages shoukd be mediated by one or more business
layer pages and/or components. This means that one
or more of the other six link types wil replace an
intermediate link in the design phase. For example. we
need more pages and components 1o accomplish the file
upload task, which implies the intermediate link
between the ° FileUpload.sip’ and the
FileUploadConfirmsip’ must be replaced with some
other fink types (which will be explained in detail in a
later section). The two pages are connected in both
directions because a primary author may submit more
than one manuscript. Fourth, the “external’ theme

HE2E 7Pike] @ JET Al A WPE 125

page {(ie, A.PA.RegstrationThetmePagesnp) i shown
because a primary author should register after a couple
of failed login attempts. Fifth, we assume that the
‘LoginEmordip will show an error message as well as
the exact Yogin form contained in the ‘Logingp page.
As such, the pages and their links are affected by
implementation envisioning and strategy in the

designer' s mind,

4.3 Design

The design phase adds more detals to the analysis
artifacts of a Web application 1o make them realizable
in software by performing the two tasks: (1)
eaborating the refined compendium disagrams with the
consideration of all the page types. link types,
component types, and the application architecture, and
(2) developing the Ik data dictionary (LDD) that
details data flows along the links across pages and
components as well as application layers.

4.3.1 Elaborating Compendium Diagrams

This step only shows the rendering process of the
presentation layer pages We defer the underlying logic
to the next step. Aforementioned, there are five types of
presentation layer pages, six main link types. four
component types, and four business layer page types.
We place all the design primitives in an appropriate
layer of the application architecture At this step. we
exclude any related theme pages (eg.,
A PARegistrationThemePagesnp in Fig. 8) as well as
affiliated or third-party Websites. Each design primitive
must be denoted by the corresponding given suffix (eg.
‘np for static non-interactive page) or notations {eg.
(> for form link). Any componenis that wil be

126 EFAAANGHNA A1R2Y AL

automatically triggered should be excluded. Fig. 9 shows
an elaborated compendium diagram for Fig. 8

4.3.2 Developing Link Data Dictionary

A data dictionary is a central repository of all data
definitions for the target application. There are many
advantages of using it for application development [31].
Developing a link data dictionary for the target
application is the final step before its implementation.
Fig. 10 shows elements of the link data dictionary: (a)

identifies data flows and siructures over the link and
thelr origins and destinations, The link data structure
dictionary contains detailed definitions for data
structures, which are built on four data relationships
(for more details, see [31], ppl84-204). Data elements
in each data swructure are described by its name,
description, alias, kngth, and value in the Ink data
element description. The page/component dictionary
provides, i necessary, logic summaries for ither pages

or software components, especially, application

a sample link data flow dictionary, (b} a samplke components.
page/component dictionary, (¢} a sample link data
structure dictionary, and {d) a sample link data
element descriptions. The link data flow dictionary
Style.cpp 92 | A PATnitial Submission ValidFile.cpp Presentation Layer
ThemePage.snp Y
<d>
<a» <a» <g>
¥ h 4 FileUploadsip |« UploadError.dnp
ForgotPassword sip Login.sip r‘ y
<f> <f>
<f> <a>
APA Reg LoginError.dip - - -
™ ThemePage.snp 1 - FileUploadConfirm.sip |«
<e> <p>
EmailPassword wsp Upload. wlc GenConfirm isp
3
<> |<d> <e> <e>)
3 <d> S <e>| Business
AccessDataspp CheckLoginisp |~ “» GetUpload.isp Layer
3
,.\ <o <o <d> <> w(e) <h>
TN\ GenErrorisp |
A 4
» AccessDatadac | Data Access Layer

—

Data Layer

Fig. 9. An Elaborated Compendium Diagram

Y 2E 7)gko] § jEA A AA PPE 127

Link data flow name. Email address Page name: EmailPassword wsp
Description: Author email address Refated component: AccessData.dac
Source theme: Initiad Submission Description: Tasks of the page here
Source page: ForgotPassword.sip Data inflow: Email address
Source component: N/A Data outfiow: ThemePage.sap reguest
Sink theme: Initial Submission Page logic summary. Shows page logic using
. . the Structured English.
Sink : EmailP d.
page matasrwrod wep Pseudocode might be
Sink component: AccessData dac employed along with
flowchart.
Data structures: Email address
(@) ®)
Data element name: Email address
Data structure name: Email address
o) Description: Anthor email address
Description: Author emai] address
Type Alphanumeric
Data elements: Email address
Length: 30
©) Validity constraints: Valid email address
Special vajue: NA
@

Fig. 10. A Link Data Dictionary

5. Discussion

The proposed methodology is an attempt to
incorporate the environmental changes in Web
application development into its design, including
growing functionalities [10], advancing Web technologies
{1]. increasing demands for integration with non?Web
applications [9, 10], and ever-changing content and
structure [9, 13]. Each area of change knds itself to its
own issue, The growing functionality mtroduces the
issue of how to separate the “what fiom the “how’
aspects in designing Web applications, Addressing the
issues s our first confribution. The former aspect is
addressed via the requirement gathering and the

analysis phase, whik the latter by the design phsse.
"The proposed classifications of Web pages, components,
and links as well as the concept of the link data
dictionary play critical roles in this separation view, The
presentation layer pages constitute the “what' aspect
becanse they specify “what information content” should
be delivered to the user. The business layer pages and
components along with the link data dictionary signify
the “how” aspect because they represent the logic
behind the rendering prooess of the presentation layer
pages. The link types, then, work as the glue that
associates the pages and components.

Our second contribution comes from the reflection on
the rapid advanoes in Web technologies. This raises a

128 F=FAAAYEIA A28 A%

different ssue of how to incorporate the technology
clements into designing Web applications. We address
the issue with the notion of granulation of Web pages
and components. The concepts of dynamic pages, server
pages, client and server preprocessor pages, and the four
types of components encompass all the available
technology elements for the design. They enable us to
take into account the various markup languages.
scripting technologies, and component technology in
designing Web applications. Related to the second
contribution is an exphicit consideration of core business
processes running on non-Web applications as
components for the integration with Web applications.
Another important issue ensues from the ever-
changing content and structure of a Web application.
Those changes inevitably bring up changes in its
navigational structure and presentation [9]). The way of
managing changes in the structure and presentation
affects the degree of the global and local coherence, and,
hence, the level of the user oognitive overhead and
disorientation Therefore. the issue can be reduced to
the matters of global and local ocherence and effective
change management. A higher global and local
ooherence and fts resulting better user comprehensibility
can be achieved by presenting effective navigational
structure [14, 15, 22, X0], while the manageability and
modifiability of a Web application can be enhanced by
maintaining semantically cohesive content and
syntactically loosecoupled information clusters {35, 36).
In other words, an effective navigational structive
rquires an effective amrangement of navigational cues
(ie. Inks) m both global and local levels, while an
efficient change management requires loosely coupled
and tightly cohesive information clusters, Indeed,
“modules” with those charactenistics make it easer to

manage changes [28].

The proposed methodology makes another
contribution by addressing the two critical matters via
the concepts of compendium and access scope. A
ocompendium i semantically oohesive because it is all
about a theme that js detajled by its context pages,
links, and components. The individual compendium is
also syntactically loose-coupled because each of themn
deals with a different theme The characteristics of a
compendium should make it easier to update, add, or
delete pages and links without serious “ripple effects”
On the other hand, the three types of access soopes are
useful tools for enhandng the global and local ooherence
because they present the navigational structure given
by the internal and external interconnections of
compendia. Changes in compendia can be easily
reflected by corresponding alterations in the acoess soope
without affecting the overall level of user
comprehensibility.

The methodology ako has implications for managers.
It suggests a user information requirements gathering
technique and encompasses the recent environmental
changes in Web application design. This would give
managers insights into what should be involved in a
Web application development project in termns of
information requirements and Web application
infrastructure. The methodology alse takes expliditly into
account the integration of Web applications with
exigting non-Web counterparts as well as business
partners and customers business processes by allowing
them 1o be connected to appropriate compendia. This
would give managers an idea about what core business
processes of non~Web applications, business partners,
and customers should be integrated with the target
Web application.

6. Conclusion

Developing a Web application is just beyond
converting documents into markup counterparts. 1t
involves various Web technologies and often requires
integration with other technologies. It frequently
implements fairly complex logic either through
components of within pages Moreover, due to an
inherent characteristic of the Web, the size of an
application can grow indefinitely, The designers of Webr
based applications seem to get a sizable amount of
pressure on delivering high—coherence and low—cognitive-
overhead applications along with “ustainable” contents,
As a oonsequence, developing Web application beoomes
complex and time-consurning [10). The primary goal of
this paper i to provide a “sustainable’ methodology
for Web-based application design. We conclude with
sotme remarks on implementation and future research,

As for the implementation, there are several issues
that should be addressed during design. First. the
designer should determine appropriate page sizes in
accordance with the intended breadth and depth of an
application. The decision will lead to a proper
organization of highly—granulated pages identified in the
analysis process, Second, the common scope is

comprised of only themes but can inchude links to

HY2E 7)9ke] ASEA A A PEE 129

pages repeating on every Webpage such as ‘contact
page or help page Third, although the proposed
methodology seems to be a “waterfall’ model an
iterative approach shoukl be employed.

Related to future research, there are several
suggestions. First. we assume that software components
are out there We do not consider component based
application development tasks: building, searching,
customizing, and composing [26]. Developing an
effective tethod that deals with the tasks is another
topic. Second, we did not spedfically deal with page
layout design issues. which may include identifying
individual content elements, positioning the elements.
determining page sizes, and incorporating other interface
elements, Finally, this paper lacks detailed
implementation and testing procedures. Although, in
most cases. implementing the design specifications
proposed in the methodology would be a
straightforward mapping process, it would be a
complete method provided there are detailed
fnplementation and testing procedures, Despite these
factors, we believe that the method that has been
developed by rigorously applying a number of rew
concepts should provide a consistent and manageable
way for Web-based application design.

130 #2AAANES =) 124 A28

References

[1] Britton, K.H., Y. Li, R. Case, C. Seckamp, A.
Citron, B. Topol, R. Floyd, and K. Tracy.
“Transcoding: Extending e-Business to New
Environments,” IBM Systems Journal, Vol 40,
No. 1, 2001, pp. 153-178.

[2) Byrd, T.A. K.L. Cossick, and RW. Zmud, “A
Synthesis of Research on Requirements
Analysis and Knowledge Acquisition
Techniques,” MIS Quarterly, Vol 16, No. 1.
1992, pp. 117-138.

[3] Conallen, J., Building Web Applications with
UML, Addison-Wesley, Reading, 2000,

{4] Conklin, J. “Hypertext: An Introduction and
Survey”, IEEE Computer, Vol 20, No. 9, 1987,
pp. 1740,

(5] Cook. M.A., Building Enterprise Information
Architectures:! Reengineering Information
Systems, Prentice Hall, Upper Saddle River,
1996,

[6] DeMarco. T., Structured Analysis and System
Specification, Prentice-Hall, Englewood CIliffs,
1979.

[7] Engelbart, D.C., “Toward Augmenting the
Human Intellect and Boosting Our Collective
1Q." Communications of the ACM, Vol 33,
No. 8, 1995, pp. 30-33,

8] Femis. C. and J. Pamell, “What are Web
Services,” Communications of the ACM, Vol
46, No. 6, 2003, p. 3L

[9) Fingar, P.. “Component-based Frameworks for
E-commerce,” Communications of the ACM,
Vol. 43, No. 10, 2000, pp. 61-66.

{10] Flurry, G. and W. Vicknair. “The IBM
Application Framework for e-Business” IBM
Systems Journal, Vol 40, No. 1, 2001, pp. 8-24.

{11] Praternali, P., “Tools and Approaches for

Developing Data-intensive Web Applications:
A Survey,” ACM Computing Surveys, Vol. 31,
No. 3. 1998, pp. 227-263.

(12] Gane, C. and T. Sarson, Structured Systems
Analysis, Prentice-Hall, Englewood Cliffs, 1979.

[13] Guenther, K. “What is a Web Content
Management Sclution?” Online, Vol 25, No. 4,
2001, pp. 81-84.

[14) Halasz, F. and S. Schwartz, “The Dexter
Hypertext Reference Model,” Communications
of the ACM., Vol 37, No. 2, 1994, pp, 30-20.

[15] Hardman, L. and B. Sharrat, “User—centered
Hypertext Design: The Applications of HCI
Design Principles and Guidelines,” in Hypertext
State of the Art, R. Mcaleese and C. Green
(eds.), Intellect, 1990, pp. 252-259,

[16] Huang, Y. and J. Chung, “A Web Services-
based Framework for Business Integration
Solutions,” Electronic Commerce Research and
Applications, Vol. 2, No, 1, 2003, pp. 15-26.

[17] Isakowitz, T., E.A. Stohr and P.
Balasubramanian, “RMM: A Methodology for

Structured Hypermedia Design.”
Communications of the ACM, Vol. 38 No. &
1995, pp. 34-44,

(18] Jacobson, L. M. Christerson, P. Jonsson and
G. Overgaard, Object Oriented Software
Engineering: A Use Case Driven Approach,
Addison-Wesley, Wokingham, 1992,

{19} Jacobson, 1. G. Booch and J. Rumbaugh, The
Unified Software Development Process, Addison
Wesley Longman, Reading, 1999,

[20] Johnson-Laird. P.N. “Mental Models,” in
Foundations of Cognitive Science, M.L Posner
{ed.}, MIT Press, Cambridge, 1989, pp. 469-499,

f21] Johnson, R.D., and D. Reimer, “Issues in the
Development of Transactional Web
Applications,” IBM Spystems Joumal Vol 43,
No. 2, 2004, pp. 430-440.

[22] Kahn, P.. “Visual Cues for Local and Global
Coherence in the WWW," Communications of
the ACM, Vol. 38, No. 8, 1995, pp. 67-69.

[23] Makadok. R, “Can Fist-Mover and Early-
Mover Advantages be Sustained in an Industry
with Low Barriers to Entry/Imitation?”
Strategic Management Journal Vol 19, No. 7.
1998, pp. 633-696.

[24] Marchionini, G.. and B. Schneiderman.
“Finding Facts and Browsing Knowledge in
Hypertext Systems,” IEEE Computer, Vol. 21,
No. 3, 1988, pp. 70-80.

{25] Miller, G.A. “The Magical Number Seven,
Plus or Minus Two: Some Limits on Our
Capability for Processing Information.” The
Psychology Review, Vol 63 No. 2, 1956, pp.
81-97.

{26] Mili, H., F. Mili and A. Mili, "Reusing
Software: Issues and Research Directions.”
IEEE Transactions on Software KEngineering,
Vol. 21, No. 6, 1995, pp. 528-561.

[27) O Reilly, T.. “The Internet Patent Land
Grab.” Communications of the ACM, Vol 43,
No. 6, 2000, pp. 29-31.

[28] Page-Jones, M., Practical Guide to Structured
Systems Design, Yourdon Press., Englewood
Cliffs, 1988.

[29] Papazoglou. M.P., and W.V.D. Heuvel,
“Service-oriented Design and Development
Methodology,” Intemational Journal of Web
Engineering and Technology, Vol. 2, No. 4,
2006, pp. 412-442,

il

YXE 7|99 4 ofFAeld 44 HHE 131

(30] Rivlin, E., R. Botafogo, and B. Schneiderman,
“Navigating in Hyperspace: Designing a
Structure-based Tpolbox.” Communications of
the ACM, Vol 37, No. 2, 1994, pp. 87-96.

[31] Senn. J.A. Apalysis and Design of Information
Systems, McGraw Hill, New York, 1980

(3] Simon, H, “The Architecture of Complexity,
in Proceedings of the American Philosophical
Society, Vol. 106, No. 6, 1962, pp. 467-482.

[33] Taylor, D.A. Business Engineering with Object
Technology. John Wiley & Sons, New York,
1995,

[34] Teng, J.T.C. V. Grover and K.D. Fiedler,
“Business Process Reengineering: Charting a
Strategic Path for the Information Age,”
California Management Review, Vol 36, No. 3,
1994, pp. 9-3L

[35] Thuing, M. JM. Haake and J. Hannemann,
“What's ELIZA Doing in the Chinese Room
Incoherent Hyperdocumnents - and How to
Avoid Them?” in Proceedings of the 3th
Annual ACM conference on Hypertest '91, San
Antonio, TX, December 15-18, 1991, pp. 161-
177.

(36] Thuing, M. J. Hennemann and JM. Haake,
“Hypermedia and Cognition: Designing for
Comprehension,” Communications of the ACM,
Vol. 38, No. 8, 1995, pp. 57-66.

f37] van Dijk. T.A. and W. Kintsch, Strategies of
Discourse Comprehension, Academic Press,
Orlando, 1993.

132 @FARANEIA A2 A2E

A A & A)

924

A
BALok

(E-mail : jinsoo@snw.ac.kr)

The University of Arizona 7¢I A B Aj 2] (7o 3hitka})
University of Minnesota(Carlson School of Management) & 34
YR AP Y o4

Megdgn AFAEAHW/ AN 204
ARAAE2D, { JEA2E, 282, ARAAY B3]}
A F el o] E

mailto:jinsoo@snu.ac.kr

