Abstract
In spatially multiplexed MIMO systems that enable high data rate transmission over wireless communication channels, the spatial demultiplexing at the receiver is a challenging task, and various demultiplexing methods have been developed recently by many researchers. Among the previous methods, maximum likelihood detection with QR decomposition and M-algorithm (QRM-MM)), and sphere decoding (SD) schemes have been reported to achieve a (near) maximum likelihood (ML) performance. In this paper, we propose a novel signal detection method that achieves a near ML performance in a computationally efficient manner. The proposed method is demonstrated via a set of computer simulations that the proposed method achieves a near ML performance while requiring a complexity that is comparable to that of the conventional MMSE-OSIC. We also show that the log likelihood ratio (LLR) values for all bits are obtained without additional calculation but as byproduct in the proposed detection method, while in the previous QRM-MLD, SD, additional computation is necessary after the hard decision for LLR calculation.
무선통신 채널에서 높은 전송 속도를 가능하게 하는 공간다중화 MIMO 시스템 수신부에서 다중화된 신호를 검출하는 것은 어려운 작업이며, 최근 다양한 신호검출 기법들이 개발되어졌다. 다양한 신호검출 기법 중 maximum likelihood detection with QR decomposition and M-algorithm (QRM-MLD), sphere decoding (SD)과 같은 기존 기법들은 maximum likelihood (ML)기법과 유사한 성능을 가진 것으로 보고되었다. 본 논문에서는 ML 기법과 거의 동일한 성능을 가지면서 낮은 연산복잡도를 보이는 새로운 신호검출 기법을 제안한다. 모의실험을 통하여 제안된 기법은 ML 기법과 거의 동일한 성능을 보이면서 MMSE-OSIC와 유사한 연산복잡도를 가지는 것을 보인다. 또한 기존의 QRM-MLD, SD 기법들의 경우 hard decision 후 추가적인 연산을 통해 soft decision을 위한 log likelihood ratio(LLR) 값을 생성하는 반면, 제안된 기법에서는 추가적인 연산 없이 LLR 값을 성공적으로 생성할 수 있음을 보인다.