DOI QR코드

DOI QR Code

한반도 횡단 자기지전류 탐사에 의한 상부 지각의 지전기적 구조 연구

Study on the Geoelectrical Structure of the Upper Crust Using the Magnetotelluric Data Along a Transect Across the Korean Peninsula

  • 이춘기 (서울대학교 지구과학교육과) ;
  • 권병두 (서울대학교 지구과학교육과) ;
  • 이희순 (경인교육대학교 과학교육과) ;
  • 조인기 (강원대학교 지구물리학과) ;
  • 오석훈 (강원대학교 지구시스템공학과) ;
  • 송윤호 (한국지질자윈연구원 지열자원연구실) ;
  • 이태종 (한국지질자윈연구원 지열자원연구실)
  • Lee, Choon-Ki (Department Earth Science Education, Seoul National University) ;
  • Kwon, Byung-Doo (Department Earth Science Education, Seoul National University) ;
  • Lee, Heui-Soon (Department Science Education, Gyeongin National University of Education) ;
  • Cho, In-Ky (Department Geophysics, Kangwon National University) ;
  • Oh, Seok-Hoon (Department Geosystem Engineering, Kangwon National University) ;
  • Song, Yoon-Ho (Geothermal Resources Group, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Tae-Jong (Geothermal Resources Group, Korea Institute of Geoscience and Mineral Resources)
  • 발행 : 2007.04.30

초록

한반도에서는 처음으로 동해안으로부터 서해안까지 한반도를 횡단하는 측선을 따라 자기지전류 탐사를 수행하였다. 한반도의 주된 지구조 방향인 지나방향$(N30^{\circ}E)$에 수직하게 설정된 240 km 측선을 따라 $3{\sim}8km$의 측점 간격으로 50 측점에서 자료를 획득하였다. MT 임피던스는 지역에 따라 뚜렷이 구분되는 반응이 나타나며 경기육괴, 옥천대, 경상분지 서쪽 지역, 경상분지 동쪽지역에서 각기 다른 경향의 반응을 보인다. 경상분지 서쪽 지역에서는 수백 ohm-m의 전기비저항과 $3{\sim}8km$의 두께를 가지는 퇴적층이 존재하며, 퇴적층 하부에서 $1{\sim}30$ ohm-m의 매우 낮은 전기비저항을 가지는 고전도층이 발견되었다. 옥천대에서의 자료는 위상이 $90^{\circ}$를 초과하는 매우 특이한 반응을 보이고 있으며 이러한 특이성은 매우 강한 이방성 매질의 영향에 기인하는 것으로 추정된다. 경기 육괴와 경상분지 동쪽 지역은 상부지각을 구성하는 매질이 비교적 높은 전기비저항을 가지는 매질로 이루어져있기 때문에 심부 지전기 구조를 들여다 볼 수 있는 창의 역할을 한다. 1차원 모델을 적용하였을 때 경기육괴의 경우 13 km, 경상분지 동쪽지역의 경우 18 km 두께를 가지는 층이 존재하는데 이 층이 상부지각에 해당하는 것으로 생각된다.

The first magnetotelluric (MT) transect across the Korean Peninsula was obtained traversing from the East Sea shoreline to the Yellow Sea shoreline. The MT survey profile was designed perpendicular to the strike of the principal geologic structure of the Korean Peninsula $(N30^{\circ}E)$, so-called 'China direction'. MT data were achieved at 50 sites with spacings of $3{\sim}8km$ along the 240 km survey line. The impedance responses are divided into four subsets reflecting typical geological units: the Kyonggi Massif, the Okchon Belt, the western part of the Kyongsang Basin, and the eastern part of the Kyongsang Basin. In the western part of the Kyongsang Basin, the thickness of the sedimentary layer is estimated to be about 3 km to 8 km and its resistivity is a few hundred ohm-m. A highly conductive layer with a resistivity of 1 to 30 ohm-m was detected beneath the sedimentary layer. The MT data at the Okchon Belt show peculiar responses with phase exceeding $90^{\circ}$. This feature may be explained by an electrically anisotropic structure which is composed of a narrow anisotropic block and an anisotropic layer. The Kyonggi Massif and the eastern part of Kyongsang Basin play a role of window to the deep geoelectrical structure because of the very high resistivity of upper crust. The second layers with highest resistivities in 1-D conductivity models occupy the upper crust with thicknesses of 13 km in the Kyonggi Massif and 18 km in the eastern Kyongsang Basin, respectively.

키워드

참고문헌

  1. 김기영, 홍명호, 이정모, 문우일, 박창업, 정희옥, 2005, 대규모 발파자료 초동주시 역산을 통한 한반도 지각 속도 구조 연구. 지구물리, 8(1), 45-48
  2. 김상조, 김소구, 1983, 지진파를 이용한 남한의 지각구조연구. 광산지질, 16(1), 51-61
  3. 김성균, 1995, 한반도의 지각구조에 관한 연구. 지질학회지, 31(4), 393-403
  4. 김성균, 정부흥, 1985, 한국 남부지역의 지각구조. 광산지질, 18(2), 151-157
  5. 대한지질학회, 1999, 한국의 지질. 시그마프레스, 서울, 802 p
  6. 민경덕, 이영재, 2000, 중력 탐사에 의한 포항-공주-만리포간의 지각구조 연구. 자원환경지질, 33(2), 101-109
  7. 송윤호, 이태종, T. Uchida, 2006, 가청주파수 대역 MT 탐사자료에서 원거리 기준점의 효과. 한국지구시스템공학회지, 43(1), 44-54
  8. 이춘기, 이희순, 권병두, 조인기, 오석훈, 송윤호, 이태종, 2007, 자기지전류 탐사 자료에 나타나는 옥천대의 전기적 이방성 구조. 한국지구과학회지, 28(2), 227-239 https://doi.org/10.5467/JKESS.2007.28.2.227
  9. 이희순, 송윤호, 1997, 전기장 또는 자기장 송신원을 이용한 벡터 CSMT. 자원환경지질, 30(5), 451-458
  10. 정승환 외 26인, 1993, MT 및 GDS 탐사에 의한 경상분지내 지열 및 탄화수소 탐사(I). 과학기술처, KR-93(T)-6, 55p
  11. 최광선, 신영흥, 1996, 중력자료와 지형자료의 해석에 의한 한반도 일원의 지각균형. 지질학회지, 32(5), 407-420
  12. 최승찬, 2005, CHAMP-GRACE 인공위성 데이터와 해상 측정 중력 데이터에 나타난 황해안 지역의 남중국과 북중국판의 대륙 총돌대 위치. 지구물리, 8(2), 89-92
  13. Chang, K.H., 1975, Cretaceous stratigraphy of Southeast Korea. Journal of the Geological Society of Korea, 11 (1), 1-23
  14. Chang, K.H., 1988, Cretaceous stratigraphy and paleocur-rent analysis of Kyongsang Basin, Korea. Journal of the Geological Society of Korea, 24 (3), 194-205
  15. Chave, A.D. and Thomson, D.J., 1989, Some comments on magnetotelluric response function estimation. Journal of Geophysical Research, 94 (B10), 14215-14225 https://doi.org/10.1029/JB094iB10p14215
  16. Choi, H.I., 1985, Sedimentology and its implications for stratigraphic classifications of the Cretaceous Gyeong-sang Basin. Journal of the Geological Society of Korea, 21 (1), 26-37
  17. Choi, P.Y., Lee, S.R., Choi, H.I, Hwang, J.H, Kwon, S.K., Ko, I.S, and An, GO, 2002, Movement history of the Andong Fault System: Geometric and tectonic approaches. Geosciences Journal, 6 (2), 91-102 https://doi.org/10.1007/BF03028280
  18. Chough, S.K., Kwon, S.T, Ree, J.H, and Choi, D.K, 2000, Tectonic and sedimentary evolution of the Korean Peninsula: a review and new view. Earth-Science Reviews, 52 (1-3), 175-235 https://doi.org/10.1016/S0012-8252(00)00022-2
  19. Chun, S.S. and Chough, S.K, 1992, Tectonic history of Gretaceous sedimentary basins in the southwestern Korean Peninsula and Yellow Sea. In Chough, S.K. (ed.) Sedimentary Basins in the Korean Peninsula and Adjacent Seas. Korean Sedimentology Research Group Special Publication, Hanrimwon publishers, Seoul, 104-128
  20. Egbert, GD. and Booker, J.R, 1986, Robust estimation of geomagnetic transfer functions. Geophysical Journal of the Royal Astronomical Society, 87, 173-194 https://doi.org/10.1111/j.1365-246X.1986.tb04552.x
  21. Egbert, GD. and Likelybrooks, D, 1996, Single station magnetotelluric impedance estimation: coherence weighting and the regression M-estimate. Geophysics, 61 (4), 964-970 https://doi.org/10.1190/1.1444045
  22. Gamble, T, Goubau, W, and Clarke, J, 1979. Magnetotel-lurics with a remote reference. Geophysics, 44 (1), 53-68 https://doi.org/10.1190/1.1440923
  23. Goubaou, W, Gamble, T, and Clarke, J, 1978, Magnetotelluric data analysis: removal of bias. Geophysics, 43 (6), 1157-1166 https://doi.org/10.1190/1.1440885
  24. Jiracek, GR, 1990, Near-surface and topographic distortions in electromagnetic induction. Surveys in Geophysics, 11 (2-3), 163-203 https://doi.org/10.1007/BF01901659
  25. Jones, A.G and Jdicke, H, 1984, Magnetotelluric transfer function estimation improvement by a coherence-based rejection technique, 54th Annual International Meeting, Society of Exploration Geophysics, USA, p. 51
  26. Jones, A.G, 1988, Static shift of magnetotelluric data and its removal in a sedimentary basin environment. Geophysics, 53 (7), 967-978 https://doi.org/10.1190/1.1442533
  27. Kim, J.S., Shon, H, Ryang, W.H, and Chough, S.K, 1998, Electrical resistivity and MT imaging in the northern-middle part of Eumsung Basin (Cretaceous). Korea, Geosciences Journal, 2 (4), 206-219 https://doi.org/10.1007/BF02910165
  28. Kurtz, R.D, Ostrowski, J.A, and Niblett, E.R, 1986, A magnetotelluric survey over the East Bull Lake Gabbro-Anorthosite complex. Journal of Geophysical Research, 91 (B7), 7403-7416 https://doi.org/10.1029/JB091iB07p07403
  29. Lee, H, 1994, Geophysical study of subsurface structure of Cheju island. Unpublished Ph.D. dissertation, Seoul National University, Seoul, Korea, 172 p
  30. Lee, C.K, 2006, Magnetotelluric study on the deep geo-electrical structure across the Korean Peninsula. Ph.D. Thesis, Seoul National University, Seoul, Korea, 152 p
  31. Lee, C.K, Lee, H, Kwon, B.D, Cho, I.K, Oh, S, Song, Y, and Lee, T.J., 2006, Geoelectrical structure of the Kyongsang Basin from magnetotelluric sounding. Journal of the Korean Geophysical Society, 9 (3), 273-286
  32. Lee, K., 1979, On crustal structure of the Korean Peninsula. Journal of the Geological Society of Korea, 15 (4), 253-258
  33. Lee, TJ, Song, Y, Uchida, T, Mitsuhata, Y, Oh, S. and Graham, GB, 2004, Sea effect in three-dimensional magnetotelluric survey: An application to geothermal exploration in Pohang, Korea. Proceeding of the 7th SEGJ International Symposium, November 2004, Sen-dai, 279-282
  34. Livelybrooks, D.W, 1986, Modelling earth resistivity structure for MT data: A comparison of rotationally invariant and conventional earth response functions (abs.) EOS Transactions of American Geophysical Union, 67, 918
  35. McNeice, GW. and Jones, A.G, 2001, Multisite, multifre-quency tensor decomposition of magnetotelluric data. Geophysics, 66 (1), 158-173 https://doi.org/10.1190/1.1444891
  36. Pek, J. and Verner, T, 1997, Finite difference modelling of magnetotelluric fields in 2-D anisotropic media. Geophysical Journal International, 128 (3), 505-521 https://doi.org/10.1111/j.1365-246X.1997.tb05314.x
  37. Pellerin, L. and Hohmann, GW, 1990, Transient electromagnetic inversion: A remedy for magnetotelluric static shift. Geophysics, 55 (9), 1242-1250 https://doi.org/10.1190/1.1442940
  38. Ree, J.H, Cho, M, Kwon, S.T, and Nakamura, E, 1996, Possible eastward extension of Chinese collision belt in South Korea: the Imjingang Belt. Geology, 24 (12),1071-1074 https://doi.org/10.1130/0091-7613(1996)024<1071:PEEOCC>2.3.CO;2
  39. Rodi, W, and Mackie, R.L, 2001, Non-linear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics, 66 (1), 174-187 https://doi.org/10.1190/1.1444893
  40. Song, Y, Lee, TJ, and Uchida, T, 2006, Effect of remote reference on audio-frequency magnetotelluric data. Journal of Geosystem Engineering, 43 (1), 44-54
  41. Swift, C, 1967, A magnetotelluric investigation of an electrical conductivity anomaly in the southwestern United States. Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, USA, 211 p
  42. Tauber, S, Banks, R, Ritter, O, and Weckmann, U, 2003, A high-resolution magnetotelluric survey of the Iapetus Suture Zone in southwest Scotland. Geophysical Journal International, 153 (3), 548-568 https://doi.org/10.1046/j.1365-246X.2003.01912.x
  43. Uchida, T, Song. Y, Lee. T.J., Mitsuhata, Y, Lee, S.K, and Lim, S.K, 2004, 3-D magnetotelluric interpretation for low-enthalpy geothermal resources in the Pohang area, Korea. Proceeding of the 7th SEGJ International Symposium, Sendai, Japan, 55-60
  44. Wannamaker, RE, Stodt, J.A, and Rijo, L, 1986, Two-dimensional topographic responses in magnetotellurics modeled using finite elements. Geophysics, 51 (11), 2131-2144 https://doi.org/10.1190/1.1442065
  45. Yang, J.M., 2006, Automatic rejection scheme for MT and GDS data processing and interpretation on conductivity anomalies of the Korean Peninsula. Unpublish Ph.D. dissertation, Seoul National University, Seoul, Korea, 137 p