DOI QR코드

DOI QR Code

한반도 지진특성을 고려하여 모사된 강진동에 대한 가속도 응답스펙트럼

The Acceleration Response Spectrum for Simulated Strong Motions Considering the Earthquake Characteristics of the Korean Peninsula

  • 김성균 (전남대학교 지구환경과학부)
  • 발행 : 2007.04.30

초록

응답스펙트럼은 내진설계에 있어서 중요한 기초자료의 하나이다. 응답스펙트럼을 얻기 위하여, 한반도에서 발생하는 지진들의 지진원 특성에 근거하여 다수의 강진동을 Boore(2005)에 의해 개발된 컴퓨터 프로그램 SMSIM을 사용하여 모사하였다. 여러 연구결과들에 대한 충분한 검토를 통하여, 모사에 필요한 입력자료들을 선정하였다. 모사된 강진동으로부터 얻은 응답스펙트럼은 가속도 1.0 g에 대하여 정규화하여 미국 원자력위원회(1973)의 표준응답스펙트럼과 비교하였다. 이 연구에서 얻어진 응답스펙트럼의 스펙트럼 진폭은 대략 10 Hz 이상의 고주파 대역에서 표준 응답스펙트럼 값에 비하여 큰 것으로 나타났다. 또한 응력강하량의 변화에 따른 응답스펙트럼의 변화를 평가하였다. 그 결과 큰 응력강하량에 대한 응답스펙트럼의 스펙트럼 진폭은 저주파 범위내에서 큰 값을 나타냄을 제시하였다.

The response spectrum is one of the important basic materials for the aseismic design. Numerous strong ground motions based on the seismic source characteristics for the earthquakes occurring in the Korean Peninsula were simulated to obtain the response spectra by using the computer program, SMSIM, developed by Boore (2005). Through the extensive review of other study outcomes, the input data for the simulation such as seismic source and attenuation characteristics were selected. The spectra obtained from the simulated ground motions were normalized to 1.0 g of zero period acceleration and compared with the standard response spectrum proposed by the U.S. Atomic Energy Commission (AEC, 1973). In this study, we found that the spectral values for the response spectra appeared to be larger than those of the standard spectrum in the frequency band above roughly 10 Hz. The variation of resulting response spectra was evaluated with the variable stress drops. It was shown that the spectral amplitude of the spectrum for the larger stress drop denotes higher value in the low frequency range.

키워드

참고문헌

  1. 김성균, 김병철, 2002, 한반도 발생지진의 지진원 상수. 한국지진공학회 2002년도 춘계학술대회 논문집, 6, 3-12
  2. 김성균, 김수경, 지헌철, 2002, 한반도 남부에서의 주파수별 가속도 최대진폭의 감쇠. 지질학회지, 38(2), 237-250
  3. 김성균, 김준경, 2003, 국내지진의 응답스펙트럼 특성분석. 한국원자력안전기술원, KINS/HR-560, 118 p
  4. 박동희, 이정모, 김성균, 2000, 한반도 동남부의 지진파 감쇠와 지진원 요소. 한국지진공학회 논문집, 4(3), 99-106
  5. 조남대, 박창업, 2001, 추계학적 모사법을 이용한 한반도 남부에서의 강지진동 연구. 한국지진공학회 논문집, 5(4), 17-28
  6. 조남대, 박창업, 2003, 한반도 남동부에서 부지효과를 고려한 스펙트럼 감쇠상수 추정 및 강지진동의 추계학적 모사. 한국지진공학회 논문집, 7(6), 59-70
  7. 한국지진공학회, 1997, 내진설계 기준연구(II). 건설교통부, 312 p
  8. Boatwright, J., 1984, Comments on 'Energy radiation from a spherically symmetric homogeneous source' by J. W. Rudnicki. Bulletin of Seismological Society of America, 74, 1483-1486
  9. Boore, D.M., 1983, Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bulletin Seismological Socity of America, 73, 1865-1894
  10. Boore, D.M., 1987, The prediction of strong ground motion, In the strong ground motion seismology edited by Erdic, M.O. and Tokss, M.N., 109-141
  11. Boore, D.M., 2005, SMS1M - Fortran programs for simulating ground motions from earthquakes: Version 2.3 -A Revision of OFR 96-80-A. U.S. Geological Survey, 55 p
  12. Brune, J.N., 1970 Tectonic sterss and the spectra of seismic shear wave from earthquake. Journal of Geophysical Research, 75, 4997-5009 https://doi.org/10.1029/JB075i026p04997
  13. Cho, N.D., 1999, Stochastic prediction of strong ground motions in southern Korea. M.S. Thesis, Seoul National University, Seoul, Korea, 129 p
  14. Cho, S.G and Joe, Y.H., 2005, Seismic fragility analyses of nuclear power plant structures based on the recorded earthquake data in Korea. Nuclear Engineering and Design, 235, 1867-1874 https://doi.org/10.1016/j.nucengdes.2005.05.021
  15. Fletcher, J.B., 1980, Spectra from high dynamic range digital recordings at Oroville, California aftershock and their source parameters. Bulletin of Seismological Society of America, 76, 43-64
  16. Harr, L.C., Fletcher, J.B., and Mueller, C.S., 1984, The 1982 Enola, Arkansas, swarm and scaling of ground motion in the eastern United States. Bulletin of Seismological Society of America, 74, 2463-2482
  17. Hough, S.E., 1996, Observational constrains on earthquake source scaling: understanding the limits in resolution. Tectonophysics, 261, 83-95 https://doi.org/10.1016/0040-1951(96)00058-3
  18. Irikura, K., 1994, Earthquake source modeling for strong motion prediction. Zishin, 46, 495-512 (in Japanese)
  19. Jun, M.S., 1990, Source parameters of shallow intraplate earthquakes in and around the Korean Peninsula and their tectonic implication. Ph.D. thesis, Uppsala University, Uppsala, Sweden
  20. Kanamori, H., and Anderson, D.L., 1975, Theoretical basis of some empirical relations in seismology. Bulletin of Seismological Society of America, 65, 1073-1095
  21. Kim, S.K. and Kim, M.S., 1998, Source parameters of the southern Yellow Sea Earthquake occurred on July, 25, 1994. Journal of the Earthquake Engineering Society of Korea, 2, 113-118
  22. Kim, S.K., Yang, J.Y., and Oh, J., 2006, Q-values for P and S waves in the southern Korean Peninsula based on the coda-normalization method. Geosciences Journal, 10, 465-477 https://doi.org/10.1007/BF02910440
  23. Lay, T. and Wallace, T.C., 1995, Modem global seismology. Academic Press, New York, USA, 521 p
  24. Oohara, S., 1979, Modern aseismic engineering, Morikita-Suppan. Tokyo, Japan, 206 p
  25. Paz, M., 1991, International handbook of earthquake engineering code, programs, and examples. Chapman & Halls, New York, USA, 545 p
  26. Snoke, J.A., 1987, Stable determination of (Brune) stress drops. Bulletin of Seismological Society of America, 77, 2, 530-534
  27. Solnes, J., 1974, Engineering seismology and earthquake engineering, International Publishing Company. Nether-land, 315 p
  28. U.S. AEC, 1973, Regulatory Guide 1.60. United States Atomic Energy Commission
  29. http://www.kwa.go.kr/

피인용 문헌

  1. Evaluation of Seismic Loading of Pile Foundation Structure Considering Soil-foundation-structure Interaction vol.18, pp.3, 2014, https://doi.org/10.5000/EESK.2014.18.3.125