Purification and Characterization of Superoxide Dismutase in Sphingomonas sp. KS 301

Sphingomonas sp. KS 301의 Superoxide Dismutase 정제 및 특성

  • 강희정 (단국대학교 첨단과학부 미생물학과) ;
  • 정재훈 (단국대학교 첨단과학부 미생물학과) ;
  • 최지혜 (단국대학교 첨단과학부 미생물학과) ;
  • 손승렬 (단국대학교 기초과학연구소)
  • Published : 2007.06.30

Abstract

Sphingomonas sp. KS 301, which was isolated from oil contaminated soil, was shown to have five different SODs (SODI, II, III, IV, V) which can be separated by DEAE-Sepharose chromatography, and SOD III was finally purified in this study by ammonium sulfate precipitation, DEAE-Sepharose chromatography, Superose 12 gel filtration and Uno-Q1 ion exchange chromatography. The molecular weight of SOD III was 23 kDa as determined by SDS-PAGE and the apparent molecular weight of the native enzyme was estimated to be approximately 71 kDa by Superose-12 gel filtration chromatography. These data suggest that the purified SOD consists of at least two subunits. The specific activity of the SOD III was higher than Mn type or Fe type SOD of Escherichia coli by 5 fold. To determine the type of SOD III, inhibitory effects of $NaN_{3},\;H_{2}O_{2},\;KCN$ were examined. 10 mM $NaN_{3}$ was able to inhibit 56% of the SOD III activity, which indicates that this SOD is Mn type. The optimum pH of the SOD III was 7.0 and the optimum temperature was $20^{\circ}C$. N-terminal amino acid sequence of purified SOD III was most similar to those of Psudomonase ovalis and Vibrio cholerae among bacteria.

유류오염 토양에서 난분해성 물질인 PAH (polycyclic aromatic hydrocarbon)들을 잘 분해하는 균주 중 SOD (superoxide dismutase) 활성이 높은 균주인 Sphingomonas sp. KS 301의 SOD특성을 알아보기 위하여 Ammonium sulfate 침전, DEAE-Sepharose 크로마토그래피, Superose-12 겔 여과 크로마토그래피, Uno-Q1 이온교환 크로마토그래피를 이용하여 SOD 단백질을 정제하였다. Sphingomonas sp. KS 301은 DEAE-Sepharose 크로마토그래피로 분석한 결과, 기존의 알려진 세균들과는 달리 서로 다른 5가지의 SOD 활성을 가지고 있는 것으로 나타났으며 본 연구에서는 그중 SOD III를 부분 정제하였다. 정제한 SOD III는 Mn type 및 Fe type Escherichia coli SOD와 비교했을 때 비활성도(specific activity)가 5배로 높게 나타났다. SOD III의 분자량은 SDS-PAGE에서는 23 kDa으로 측정되었으며 Superose-12겔 여과 크로마토그래피 후 native 상태의 분자량은 71 kDa으로 정제한 SOD는 3개의 소단위체로 구성되어 있는 것으로 보여진다. 정제한SOD III의 최적 pH는 7.0 이었고 $20^{\circ}C$에서 최적의 활성을 보였다. 또한 SOD의 종류를 알 수 있는 억제물질 $NaN_{3},\;H_{2}O_{2},\;KCN$를 이용한 억제효과를 살펴보았더니 $NaN_{3}$에만 억제되어 Mn type의 SOD임을 알 수 있었다. 또한 이 효소의 아미노 말단의 아미노산 서열은 Psudomonase ovalis 및 Vibrio cholerae의 SOD와 가장 유사하였다.

Keywords

References

  1. Adelman, R., R.L. Saul, and B.N. Ames. 1989. Oxidative damage to DNA: Relation to species metabolic rate and life span. Proc. Natl. Acad. Sci. USA 85, 2706-2708
  2. Ames, B.N. 1983. Dietary carcinogens and anti-carcinogens. Science 221, 1256-1264 https://doi.org/10.1126/science.6351251
  3. Amstad, P. and D. Cerutti. 1990. Genetic modulation of the cellular antioxidant defense capacity. Environ. Health Perspect. 88, 77-82 https://doi.org/10.2307/3431055
  4. Barriere, C., R. Bruckner, and R. Talon. 2001. Characterizaton of the single superoxide dismutase of Staphylococcus xylosus. Appl. Environ. Microbiol. 67, 4096-4104 https://doi.org/10.1128/AEM.67.9.4096-4104.2001
  5. Benov, L., L.Y. Chang, B. Day, and I. Fridovich. 1995. Copper, zinc superoxide dismutase in Escherichia coli: periplasmic location. Arch. Biochem. Biophy. 319, 508-511 https://doi.org/10.1006/abbi.1995.1324
  6. Benov, L.T. and I. Fridovich. 1994. Escherichia coli expresses a copper- and zinc-containing superoxide dismutase. J. Biol. Chem. 269, 25310-25314
  7. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  8. Chung, H.J., E-J. Kim, U. Park, and J-H. Roe. 1995. Isolation and genetic mapping of paraquat-resistant sporulating mutants of Streptomyces coelicolor. J. Microbiol. 33, 215-221
  9. Clements, M.O., S.P. Watson, and S.J. Foster. 1999. Characterization of the major superoxide dismutase of Staphylococcus aureus and its role in starvation survival, stress resistance and pathogenicity. J. Bacteriol. 181, 3898-3903
  10. Dieter, G., R. Werner, and V. Stefan. 1998. Extracellular superoxide dismutase from Streptomyces pyogenes type 12 strain in man ganesedependent. FEMS Microbiol. Lett. 160, 217-224 https://doi.org/10.1111/j.1574-6968.1998.tb12914.x
  11. Dos Santos, W. G., I. Pacheco, M.Y. Liu, M. Teixeira, A.V. Xavier, and J. Legall. 1999. Purification and characterization of an iron superoxide dismutase and a catalase from the sulfate-reducing bacterium Desulfovibrio gigas. J. Bacteriol. 182, 796-804 https://doi.org/10.1128/JB.182.3.796-804.2000
  12. Farr, S.B. and T. Konoma. 1991. Oxidative stress responses of Escherichia coli and Salmonella typhimurium. Microbiol. Rev. 55, 561-585
  13. Hassan, H.M. 1989. Microbial superoxide dismutases Adv. Genet. 26, 65-97
  14. Inaoka, T., Y. Matsumura, and T. Tsuchido. 1998. Molecular cloning and nucleotide sequence of the superoxide dismutase gene and characterization of its product from Bacillus subtilis. J. Bacteriol. 180, 3697-3703
  15. Kim, T.S., Y. Jung, B.K. Na, K.S. Kim, and P.R. Chung. 2000. Molecular cloning and expression of Cu/Zn-containing superoxide dismutase from Fasciola hepatica. Infection Immunity 68, 3941-3948 https://doi.org/10.1128/IAI.68.7.3941-3948.2000
  16. McCord, J.M., B.B. Keele, Jr., and I. Fridovich. 1971. An enzymebased theory of obligate anaerobiosis: The physiological function of superoxide dismutase. Proc. Natl. Acad. Sci. USA 68, 1024-1027
  17. Merkamm, M. and A. Guyonvarch. 2000. Cloning of the sodA gene from Corynebacterium melassecola and role of superoxide dismutase in cellular viability. J. Bacteriol. 183, 317-322
  18. Misra, H.P. and I. Fridovich. 1978. Inhibition of superoxide dismutases by azide. Arch. Biochem. Biophys. 189, 317-322 https://doi.org/10.1016/0003-9861(78)90218-7
  19. Parker, M.W. and C.C.F. Blake. 1988. Iron-and manganese-containing superoxide dismutases can be distinguished by analysis of their primary structures. FEB. 229, 377-382 https://doi.org/10.1016/0014-5793(88)81160-8
  20. Ravindranath, S.D. and I. Fridovich. 1975. Isolation and characterization of a manganese-containing superoxide dismutase from yeast. J. Biol. Chem. 250, 6107-6112
  21. Steinman, H.M. 1985. Bacterocuprein superoxide dismutase in pseudomonads. J. Bacteriol. 162, 1255-1260
  22. Yamakura, F., I. Matsumoto, and K. Terauchi. 1991. Isolation of Mn-SOD and low active Fe-SOD from Methylomonas J consisting of identical proteins. Free Radical Res. Commun. 12-13, 329-334
  23. Yost, F.J. and I. Fridovich. 1973. An iron-superoxide dismutase from Escherichia coli. J. Biol. Chem. 248, 4905-4908
  24. Youn, H-D., E-J. Kim, J-H. Roe, Y.C. Hah, and S-O. Kang. 1996. A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem. J. 318, 889-896 https://doi.org/10.1042/bj3180889