Recombinant Expression and Purification of Functional XorII, a Restriction Endonuclease from Xanthomonas oryzae pv. oryzae

  • Published : 2007.04.30

Abstract

An endonuclease from Xanthomonas oryzae pathovar oryzae KACC 10331, XorII, was recombinantly produced in Escherichia coli using a T7 system. XorII was purified using a combination of ion exchange and immobilized metal affinity chromatography (IMAC). An optimized washing protocol was carried out on an IMAC in order to obtain a high purity product. The final amount of purified XorII was approximately 2.5 mg/L of LB medium. The purified recombinant XorII was functional and showed the same cleavage pattern as PvuI. The enzyme activity tested the highest at $25^{\circ}C$ in 50 mM NaCl, 10 mM Tris-HCl, 10 mM $MgCl_{2}$, and 1 mM dithiothreitol at a pH of 7.9.

Keywords

References

  1. Bickle, T.A. and D.H. Kruger. 1993. Biology of DNA restriction. Microbiol. Rev. 57, 434-450re.k
  2. Choi, S.H. and J.E. Leach. 1994. Identification of the XorII methyltransferase gene and a vsr homolog from Xanthomonas oryzae pv. oryzae. Mol. Gen. Genet. 244, 383-390
  3. da Silva, A.C., J.A. Ferro, F.C. Reinach, C.S. Farah, L.R. Furlan, R.B. Quaggio, C.B. Monteiro-Vitorello, M.A. Van Sluys, N.F. Almeida, L.M. Alves, et al. 2002. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417, 459-463 https://doi.org/10.1038/417459a
  4. Ezuka, A. and H. Kaku. 2000. A historical review of bacterial blight of rice. Bull. Natl. Inst. Agrobiol. Resour. (Japan) 15, 53-54
  5. Kobayashi, I. 2001. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res. 29, 3742-3756 https://doi.org/10.1093/nar/29.18.3742
  6. Lee, B.M., Y.J. Park, D.S. Park, H.W. Kang, J.G. Kim, E.S. Song, I.C. Park, U.H. Yoon, J.H. Hahn, B.S. Koo, G.B. Lee, H. Kim, H.S. Park, K.O. Yoon, J.H. Kim, C.H. Jung, N.H. Koh, J.S. Seo, and S.J. Go, et al. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res. 33, 577.586 https://doi.org/10.1093/nar/gki206
  7. Ochiai, H., Y. Inoue, M. Takeya, A. Sasaki, and H. Kaku. 2005. Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity. Jpn. Agr. Res. Q. 39, 275-287 https://doi.org/10.6090/jarq.39.275
  8. Qian, W., Y. Jia, S.X. Ren, Y.Q. He, J.X. Feng, L.F. Lu, Q. Sun, G. Ying, D.J. Tang, H. Tang, et al. 2005. Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res. 15, 757-767 https://doi.org/10.1101/gr.3378705
  9. Roberts, R.J., M. Belfort, T. Bestor, A.S. Bhagwat, T.A. Bickle, J. Bitinaite, R.M. Blumenthal, S.K. Degtyare, D.T. Dryden, K. Dybvig, et al. 2003. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res. 31, 1805-1812 https://doi.org/10.1093/nar/gkg274
  10. Thieme, F., R. Koebnik, T. Bekel, C. Berger, J. Boch, D. Buttner, C. Caldana, L. Gaigalat, A. Goesmann, S. Kay. et al. 2005. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J. Bacteriol. 187, 7254-7266 https://doi.org/10.1128/JB.187.21.7254-7266.2005
  11. Wang, R.Y., J.G. Shedlarski, M.B. Farber, D. Kuebbing, and M. Ehrlich. 1980. Two sequence-specific endonucleases from Xanthomonas oryzae. Characterization and unusual properties. Biochim. Biophys. Acta. 606, 371-385 https://doi.org/10.1016/0005-2787(80)90047-7