초록
하드 디스크(Hard Disk) 결함의 표준 패턴 클래스는 6가지로 분류되며, 이는 하드 디스크 생산 공정의 불량 처리 과정에서 중요한 역할을 수행한다. 본 논문에서는 다층 퍼셉트론(Multi-Layer Perceptron)을 이용한 하드 디스크 결함 분포의 패턴 인식 기법을 제시한다. 결함 분포로부터 5가지의 특징들을 추출하고, 이를 이용하여 퍼셉트론의 입력을 구성하였으며, 미리 분류된 표준 패턴 클래스를 이용하여 퍼셉트론의 출력을 구성하였다. 구성된 입출력 데이터들은 오차 역전파(Error Back-Propagation) 알고리듬을 통하여 다층 퍼셉트론의 학습에 사용되었다. 테스트 결과 제시된 신경망은 하드 디스크의 패턴 분류에 만족할 만한 성능을 나타내었다.
In the Hard Disk Drive(HDD) production, the detect pattern or defective HDD set is important information to diagnosis of defective HDD set. This paper proposes a pattern recognition neural network for the defect distribution of HDD. In this paper, 5 characteristics are determined for the classification to six standard defect pattern classes. A multi-layer perceptron is trained for the pattern classification the inputs of which are 5 characteristic values and the 6 outputs are the nodes of standard patterns. The experiment with proposed neural network shows satisfactory results.