DOI QR코드

DOI QR Code

적응학습 퍼지-신경회로망에 의한 IPMSM의 최대토크 제어

Maximum Torque Control of IPMSM with Adoptive Leaning Fuzzy-Neural Network

  • 정동화 (순천대학교 정보통신공학부) ;
  • 고재섭 (순천대학교 대학원 전기공학과) ;
  • 최정식 (순천대학교 대학원 전기공학과)
  • 발행 : 2007.06.30

초록

IPMSM은 하중에 비하여 고출력으로 인하여 전기자동차에 널리 보급되고 있다. 본 논문은 적응 학습 퍼지-신경회로망과 ANN을 이용한 IPMSM드라이브의 최대토크 제어를 제시한다. 이러한 제어 방법은 인버터의 정격전류 및 전압값의 범위를 고려한 전속도 영역에 적용 된다. 본 논문은 적응학습 퍼지-신경회로망을 이용하여 IPMSM의 속도제어와 ANN을 이용하여 속도를 추정을 제시한다. 신경회로망의 역전파 알고리즘은 전동기 속도의 실시간 추정을 제시하는데 사용된다. 제시된 제어 알고리즘은 적응학습 퍼지-신경회로망과 ANN 제어기를 IPMSM 드라이브에 적용된다. 최대토크에 의해 제어된 동작 특성은 세부적으로 실험한다. 또한 본 논문은 적응 학습 퍼지 신경회로망과 ANN의 효과를 결과 분석을 통해 제시한다.

Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes maximum torque control of IPMSM drive using adaptive learning fuzzy neural network and artificial neural network. This control method is applicable over the entire speed range which considered the limits of the inverter's current and voltage rated value. This paper proposes speed control of IPMSM using adaptive learning fuzzy neural network and estimation of speed using artificial neural network. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled adaptive learning fuzzy neural network and artificial neural network, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the adaptive learning fuzzy neural network and artificial neural network.

키워드

참고문헌

  1. G. R. Slemon, 'Electric machines and drives,' Reading, MA: Addison-Wesley, 1992
  2. T. J. E. Miller, 'Brushless permanent magnet and reluctance motor drives,' Oxford, U. K.: Clarendon, 1989
  3. Mona N. Eskander, 'Minimization of Losses in Permanent Magnet Synchronous Motors Using Neural Network', Journal of Power Electronics. vol. 2, no. 3, pp 220-229, 2002
  4. B. K. Bose and P. M. Szczesny, 'A microcomputer-based control and simulation of an advanced IPM synchronous machines drive system for electric vehicle propulsion,' IEEE Trans. IE, vol, 35, no. 4, pp. 547-559, 1988
  5. T. M. Jahns, 'Flux weakening regime operation of an interior permanent magnet synchronous motor drive,' IEEE Trans. IA, vol. 23, no. 4, pp. 681-689, 1987
  6. S. R. Macmin and T. M. Jahns, 'Control technique for interior high speed performance of interior PM synchronous motor drives,' IEEE Trans. IA, vol, 27, no. 5, pp. 997-1004, 1991
  7. B. K. Bose, 'A high performance inverter-fed drive system of an interior permanent magnet synchronous machines,' IEEE Trans. IA, vol. 24, pp. 142-150, 1988
  8. S. R. MacMinn and T. M. Jahns, 'Control techniques for improved high performance of interior PM synchronous motor drives,' IEEE Trans. IA, vol. 27, pp. 997-1004, 1991
  9. S. Morimoto, M. Sanada and Y. Taketa, 'Wide speed operation of interior permanent magnet synchronous motors with high performance current regulator,' IEEE Trans. lA, vol. 30, pp. 920-926, 1994
  10. J. M. Kim, S. K. Sul, 'Speed control of interior permanent magnet synchronous motor drive for the flux weakening operation,' IEEE Trans. lA, vol. 33, pp. 43-48, 1997
  11. M. Santos and J. M. de la Cruz, 'Between fuzzy PID and PID conventional controllers,' NAFIPS'96, Berkley, USA, June 1996
  12. M. Ali Unar, D. J. Murray-Smith and S. F. Ali Shah, 'Design and tuning of fixed structure PID controller - A survey,' Technical Report CSC-96016, Faculty of Engineering, Glasgow University, Scotland, 1996
  13. Z. Ibrahim and E. Levi, 'Comparative analysis of fuzzy logic and PI speed control in high performance AC drives using experimental approach,' Proc. of IEEE IAS'2000, Rome, Italy, CD-ROM paper 46-3, 2000
  14. J. C. Lee and D. H. Chung, 'MRAC fuzzy control for high performance of induction motor drive,' The Trans. of KIPE, vol. 7, no. 3, pp. 215-223, 2002
  15. H. G. Lee, J. C. Lee and D. H. Chung, 'Design of fuzzy controller induction drive considering parameter change,' The Trans. of KIEE, vol. 51P, no. 3, pp. 111-119, 2002
  16. H. G. Lee, J. C. Lee and D. H. Chung, 'New fuzzy controller for high performance of induction motor drive,' The journal of KIIS, vol. 17, no. 4, pp. 87-93, 2002
  17. H. G. Lee, J. C. Lee and D. H. Chung, 'Adaptive FNN controller for speed control of IPMSM drive,' The Trans. of KIEE, vol. 41-SC, no. 3, pp. 39-46, 2004
  18. J. C. Lee, H. G. Lee, Y. S. Lee and S. M. Nam, D. H. Chung, 'Speed estimation and control of induction motor drive using hybrid intelligent control,' International Conference ICPE'04, no. 3, pp. 181-185, 2004
  19. J. C. Lee, H. G. Lee and S. M. Nam, D. H. Chung, 'Speed control of induction motor drive using adaptive FNN controller,' International Conference ICEMS'04, Conference no. PI-5(430-M09-052), 2004. [CD no. 2]
  20. C. Schauder, 'Adaptive speed identification for vector control of induction motors,' IEEE Trans. on IA, pp. 1054-1061, 1992
  21. F. Z. Feng, T. Fukao, 'Robust speed identification for speed sensorless vector control of induction motors,' IEEE Trans. on IA, vol. 30, no. 5, pp. 1234-1240, 1994
  22. H. Kubota and K. Matsuse, 'Speed sensorless field oriented control of induction motor with rotor resistance adaption,' IEEE Trans. on IA, vol. 30, no. 5, pp. 1219-1224, 1994
  23. D. H. Chung, 'Power electronics and motor control,' Intervision Press, 2005
  24. D. H. Chung, et al., 'Speed sensorless control of IPMSM drive with ANN,' KIEE Trans., vol. 52P, no. 4, pp. 154-160, 2003