Poly(N-isopropylacrylamide-co-acrylonitrile) 수화젤의 합성과 팽윤거동

Syntheses and Swelling Behaviors of Poly(n-isopropylacrylamide-co-acrylonitrile) Hydrogels

  • ;
  • 함명조 (숭실대학교 유기신소재.파이버공학과) ;
  • 김영호 (숭실대학교 유기신소재.파이버공학과)
  • Piao, Zhe Fan (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Ham, Myong-Jo (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Young-Ho (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 발행 : 2007.07.31

초록

열 응답성을 갖는 poly(N-isopropylacrylamide) (PNIPAAm) 수화젤의 팽윤 및 수축 특성을 변화시키기 위하여, 물을 용매로 하여 AN 함량이 10 mol% 이내인 P(NIPAAm-co-AN) 공중합체 및 이들의 수화젤을 합성하였고, AN 함량이 공중합체 수화젤의 임계젤전이온도(CGTT) 및 팽윤 거동에 미치는 영향을 분석하였다. 공중합체 수화젤들은 $30{\sim}32\;^{\circ}C$에서 CGTT를 나타내었으며, AN 함량이 증가함에 따라 CGTT는 저온 쪽으로 이동하였다. 이들 공중합체 수화젤을 CGTT 이하 온도의 물에서 팽윤시키면 AN 함량이 많아짐에 따라 팽윤속도가 느려지고 평형 팽윤비 값이 작아지지만, CGTT 이상에서 수축시키면 AN 함량이 많은 수화젤이 더 빠르고 더 많이 수축하였다.

Poly(N-isopropylacrylamide-co-acrylonitrile) [P(NIPAAm-co-AN)] copolymers with AN content of up to 10 mol% and their hydrogels were synthesized using water as a reaction medium, and the effects of AN unit incorporation on the critical gel transition temperature(CGTT) and swelling behaviors of the hydrogels were investigated. The CGTT of the copolymer hydrogel was $30{\sim}32\;^{\circ}C$, decreasing with increasing AN content. Below CGTT, swelling rate and equilibrium swelling ratio of the copolymer hydrogel decreased with increasing AN content. On the other hand, it exhibited faster deswelling and lower equilibrium deswelling ratio with increasing AN content above CGTT.

키워드

참고문헌

  1. L. V. Bromberg and E. S. Ron, Adv. Drug Deliv. Rev., 31, 197 (1998)
  2. M. Heskins and J. E. Guillet, J. Macromol. Sci., Part A, 2, 1441 (1968)
  3. H. G. Schild, Prog. Polym. Sci., 17, 163 (1992)
  4. T. Okano, Y. H. Bae, and S. W. Kim, J. Control. Release, 11. 255 (1990)
  5. J. H. Holtz and S. A. Asher, Nature, 389, 829 (1997)
  6. Y. Qiu and K. Park, Adv. Drug Deliv. Rev., 53, 321 (2001) https://doi.org/10.1016/S0169-409X(01)00236-8
  7. H. Inomata, S. Goto, K. Otake, and S. Saito, Langmuir, 8, 687 (1992)
  8. E. Kokufuta, Y. Q., Zhang, T. Tanaka, and A. Mamada, Macromolecules, 26, 1053 (1993)
  9. K. H. Kim and Y. J. Shin, Polymer(Korea), 18, 860 (1994)
  10. Q. Van and A. S. Hoffman, Polymer, 36, 887 (1995)
  11. X. Z. Zhang and R. X. Zhuo, Macromol. Chem. Phys., 200. 2602 (1999)
  12. Y. Kaneko, K. Sakai, A. Kikuchi, R. Yoshida, Y. Sakurai, and T. Okano, Macromolecules, 28, 7717 (1995)
  13. M. Ebara, T. Aoyagi, K. Sakai, and T. Okano, J. Polym. Sci.; Polym. Chem., 39, 335 (2001) https://doi.org/10.1002/1099-0518(20010101)39:1<1::AID-POLA10>3.0.CO;2-B
  14. T. R. Matzelle, G. Geuskens, and N. Kruse, Macromolecules, 36, 2926 (2003) https://doi.org/10.1021/ma021719p
  15. E. Diez-Pena, I. Quijada-Garrido, and J. M. Barrales-Rienda, Macromolecules, 36, 2475 (2003) https://doi.org/10.1021/ma021469c
  16. W. F. Lee and Y. C. Yeh, Eur. Polym. J., 41, 2488 (2005) https://doi.org/10.1016/j.eurpolymj.2005.04.038
  17. M. Hales, C. Barner-Kowollik, T. P. Davis, and M. H. Stenzel, Langmuir, 20, 10809 (2004) https://doi.org/10.1021/la0484016
  18. M. D. C. Topp, P. J. Dijkstra, H. Talsma, and J. Feijen, Macromolecules, 30, 8518 (1997)
  19. F. J. Xu, E. T. Kang, and K. G Neoh, Biomaterials, 27, 2787 (2006) https://doi.org/10.1016/j.biomaterials.2006.01.003
  20. C. M. Schilli, M. Zhang, E. Rizzardo, S. H. Thang, Y. K. Chong, K. Edwards, G. Karlsson, and A. H. E. Muller, Macromolecules, 37, 7861 (2004) https://doi.org/10.1021/ma035838w
  21. D. K. Pyun, Y. H. Lim, J. H. An, D. Kim, and D. S. Lee, Polymer(Korea), 20, 335 (1996)
  22. H. K. Cho, B. S. Kim, and S. T. Noh, Polymer(Korea), 25, 186 (2001)
  23. N. Sahiner, Eur. Polym. J., 43, 1709 (2007) https://doi.org/10.1016/j.eurpolymj.2007.01.046
  24. N. Sahiner, A. M. Alb, R. Graves, T. Mandai, G. L. McPherson, W. F. Reed, and V. T. John, Polymer, 48, 704 (2007) https://doi.org/10.1016/j.polymer.2006.12.014
  25. K. Mukae, M. Sakurai, S. Sawamura, K. Makino, S. W. Kim, I. Uead, and K. Shirahama, J. Phys. Chem., 97, 737 (1993)
  26. M. J. O'Neil et al. (Ed), The Merck Index, 13th Ed., Merck & Co., Inc., Whitehouse Station, N. J., p.25 (2001)
  27. T. M. Don and H. R. Chen, Carbohyd. Polym., 61, 334 (2005) https://doi.org/10.1016/j.carbpol.2005.05.025
  28. J. Brandrup and E. H. Immergut, Polymer Handbook, 3rd Ed., Wiley Interscience, N.Y., p.V/57 (1989)
  29. N. S. Save, M. Jassal, and A. K. Agrawal, J. Appl. Polym. Sci., 95, 672 (2005) https://doi.org/10.1002/app.21216