이온교환 수지를 함유한 PONF-g-GMA High Loading 음이온교환 섬유의 합성 및 바나듐 흡착 특성

Synthesis of High Loading PONF-g-GMA Anion Exchange Fiber Containing Ion Exchange Resin and Their Adsorption Properties of Vanadium

  • 백기완 (충남대학교 바이오응용화학부) ;
  • 박승욱 (충남대학교 바이오응용화학부) ;
  • 노영창 (한국원자력연구원) ;
  • 황택성 (충남대학교 바이오응용화학부)
  • Baek, Ki-Wan (School of Biological Chemistry and Applied Engineering, Chungnam National University) ;
  • Park, Seung-Wook (School of Biological Chemistry and Applied Engineering, Chungnam National University) ;
  • Nho, Young-Chang (Radiation Application Team, Korea Atomic Energy Research Institute) ;
  • Hwang, Taek-Sung (School of Biological Chemistry and Applied Engineering, Chungnam National University)
  • 발행 : 2007.07.31

초록

본 연구에서는 방사선 중합방법으로 아민화 PONF-g-GMA 이온교환 섬유를 합성하였다. 또한 핫멜트 web spray 접착방식으로 이들과 비드 수지를 결합시켜 복합 이온교환 섬유를 제조하고 이들의 바나듐 흡착특성을 확인하였다. 복합 이온교환 섬유의 이온교환 용량은 비드보다는 낮았으며, 단일 이온교환 섬유보다는 높게 나타났으며 최대 4.18 meq/g로 나타났다. 또한, 복합 이온교환 섬유의 바나듐 흡착 파과평형은 550분으로 비드 이온교환 수지보다 빠르게 진행되었고, 섬유상 이온교환체보다는 느리게 진행되었다. 한편, 바나듐의 흡착파과 시간은 pH가 낮아짐에 따라 파과가 빠르게 진행되었으며, 바나듐 농도가 증가함에 따라 흡착 평형에 도달하는 시간은 400분 전후에서 나타났다.

Aminated PONF-9-GMA ion exchange fabrics were synthesized by radiation induced graft copolymerization. Hybrid ion exchange fabrics combined with aminated PONF-g-GMA fabrics and anionic ion exchange resin were also fabricated by hot melt adhesion method and then their adsorption properties were investigated. Ion exchange capacity of the hybrid ion exchange fabrics was higher than ion exchange fabric and was lower than bead resin. The maximum value was 4.18 meq/g. Adsorption breakthrough time for vanadium of the hybrid ion exchange fabric was 550 min, which was faster than bead resin but slower than fibrous ion exchanger. The Breakthrough time of the hybrid ion exchange fabrics gets longer with increasing pH. The initial breakthrough time occurred around 400 min with increasing vanadium concentration.

키워드

참고문헌

  1. S. Irusta, M. P. Pina, M. Menendez, and J. Santamaria, J. Catal., 179, 400 (1998)
  2. S. Scire, S. Minico, C. Crisafulli, and S. Galvagno, Catal. Commun., 2, 229 (2001) https://doi.org/10.1016/S1566-7367(00)00011-X
  3. F. L Khan and A. K. Ghoshal, J. Loss., 13, 527 (2000)
  4. K. J. Beak, S. B. Lee, L K. Hong and J. D. Lee, Appl. Chem., 6, 496 (2002)
  5. M. C. Kim and J. S. Shin, Anal. Sci Tech., 19, 422 (2006)
  6. S. M. Oh, J. Korean Society of Environmental Administration, 9, 407 (2003)
  7. M. A. Centeno, M. Paulis, M. Montes, and J. A. Odriozola, Appl. Catal. B: Environ., 61, 177 (2005) https://doi.org/10.1016/j.apcatb.2005.05.001
  8. A. G. Chmielewski, T. S. Urbaski, and W. Migda, Hydrometallurgy, 45, 333 (1997)
  9. A. G. Chmielewski, K. Zwolifiski, W. Palyska, W. Migdal, Z. Liptiski, and K. Paluch, Polish Pat., 1478 (1989)
  10. L. Minelli, E. Veschetti, S. Giammanco, G. Mancini, and M. Ottaviani, Microchem. J., 67, 83 (2000)
  11. K. Kustin, D. L. Levine, G. C. McLeod, and W. A. Curby, Biol. Bull., 150. 426 (1976)
  12. P. Henry and A. Van Lierde, Hydrometellurgy, 48, 73 (1998)
  13. J. K. Chio, C.Y. Lee, H.S. Yang, and Y. C. Nho, Appl. Chem., 3, 1 (1999)
  14. S. H. Chio, Y. H, Jeong, J. J. Reong Ryoo, and K. P. Lee, Radiat. Phys. Chem., 60, 503 (2001) https://doi.org/10.1016/S0969-806X(00)00422-9
  15. T. S. Hwang, S. A. Lee, and M. J. Lee, Polymer(Korea), 26, 53 (2001)
  16. I. H. Cho, N. S. Kwak, P. H. Kang, Y. C. Nho, and T. S. Hwang, Polymer(Korea), 30, 217 (2006)
  17. K. Pyrzynska and T. Wierzbicki, Anal. Chim. Acta, 540, 91 (2005) https://doi.org/10.1016/j.aca.2004.09.015
  18. A. Denizli, B. salih, M. Y. Arica, K. Kesenci, V. Hasirci, and E. Piskin, J. Chromatogr. A, 758, 217 (1997)