Abstract
We developed an augmented new reality tool for vision-based hand gesture recognition in a camera-projector system. Our recognition method uses modified Fourier descriptors for the classification of static hand gestures. Hand segmentation is based on a background subtraction method, which is improved to handle background changes. Most of the recognition methods are trained and tested by the same service-person, and training phase occurs only preceding the interaction. However, there are numerous situations when several untrained users would like to use gestures for the interaction. In our new practical approach the correction of faulty detected gestures is done during the recognition itself. Our main result is the quick on-line adaptation to the gestures of a new user to achieve user-independent gesture recognition.
본 논문에서는 카메라-투영 시스템에서 비전에 기반을 둔 손동작 인식을 위한 새로운 알고리즘을 제안하고 있다. 제안된 인식방법은 정적인 손동작 분류를 위하여 푸리에 변환을 사용하였다. 손 분할은 개선된 배경 제거 방법을 사용하였다. 대부분의 인식방법들이 같은 피검자에 의해 학습과 실험이 이루어지고 상호작용에 이전에 학습단계가 필요하다. 그러나 학습되지 않은 다양한 상황에 대해서도 상호작용을 위해 동작 인식이 요구된다. 그러므로 본 논문에서는 인식 작업 중에 검출된 불완전한 동작들을 정정하여 적용하였다. 그 결과 사용자와 독립되게 동작을 인식함으로써 새로운 사용자에게 신속하게 온라인 적용이 가능하였다.