Abstract
TSP(Traveling Salesman Problem) is a problem finding out the shortest distance out of many courses where given cities of the number of N, one starts a certain city and turns back to a starting city, visiting every city only once. As the number of cities having visited increases, the calculation rate increases geometrically. This problem makes TSP classified in NP-Hard Problem and genetic algorithm is used representatively. To obtain a better result in TSP, various operators have been developed and studied. This paper suggests new method of population initialization and of sequential transformation, and then proves the improvement of capability by comparing them with existing methods.
지금까지의 상품 검색 방법으로는 찾고자하는 정보를 검색할 때 주로 단어의 빈도수나 어휘 정보를 이용하는 키워드 기반의 검색이 주로 쓰이고 있었다. 키워드 기반의 검색에서는 사용자의 질의와 관련이 없는 문서들까지도 같은 결과로 나타내 주고 이로 인해 사용자는 제시된 결과를 한번 더 수동적으로 검색해야하는 부담을 않게 되었다. 이러한 문제점을 해결하기 위해 온톨로지가 대두되었다. 본 논문에서는 온톨로지를 이용한 상품 검색 시스템을 직접 구축하여 분류별 검색을 통해 얼마나 정확한 검색을 하는지 실험하였다. 실험을 위해 전국적으로 On/Off라인 할인점을 운영 중에 있는 A할인점의 상품 데이터 약 40,000여개를 데이터 베이스로 구축하였고 User Interface 개발환경은 JSP와 PowerBuilder9.0을 사용하여 검색 시스템을 개발하여 실험하였다. 그 결과 본 논문에서 제안하고 설계한 상품 도메인 온톨로지를 이용한 검색 방법이 기존의 기반의 검색 방법보다 우수한 결과를 나타내고 있음을 입증하였다.