Hydrogenation and Sulfonation of a Star-type Styrene-butadiene Copolymer and Its Physical Properties

스타형 스티렌-부타디엔 공중합체의 수소화 및 술폰화

  • Park, Ju-Hyeon (Division of Applied Chemical Engineering, Chonnam National University) ;
  • Kim, Jin-Bong (Division of Applied Chemical Engineering, Chonnam National University) ;
  • Yang, Kap-Seung (Division of Applied Chemical Engineering, Chonnam National University) ;
  • Lee, Moo-Sung (Division of Applied Chemical Engineering, Chonnam National University)
  • 박주현 (전남대학교 응용화학공학부, 기능성 나노 신화학소재 사업단) ;
  • 김진봉 (전남대학교 응용화학공학부, 기능성 나노 신화학소재 사업단) ;
  • 양갑승 (전남대학교 응용화학공학부, 기능성 나노 신화학소재 사업단) ;
  • 이무성 (전남대학교 응용화학공학부, 기능성 나노 신화학소재 사업단)
  • Published : 2007.06.30

Abstract

Hydrogenation and sulfonation of a star-type styrene-butadiene copolymer (SB), in which styrene domain is matrix, were carried out in order to investigate the possibility for polymer electrolyte. Mixtures of ${\rho}-toluenesulfonylhydrazide$ and tri-n-propyl amine and acetyl sulfate were used as hydrogenating and sulfonating agents, respectively. Activation energy for the hydrogenation of SB was 89 kJ/mol. The degree of sulfonation in hydrogenated SB (H-SB) was dependent on the reaction time and the amount of acetyl sulfate. After 60 min at $65^{\circ}C$, the degree of sulfonation does not change further and insoluble products were also obtained above 40 mol% of the degree of sulfonation. Both the water uptake and proton conductivity of sulfonated H-SB (SH-SB) were increased with the degree of sulfonation. For the SH-SB with 23 mol% of sulfonic acid moiety, ionic conductivity was $1.6{\times}10^{-3}S/cm$.

매트릭스가 폴리스티렌이고 분산상이 폴리부타디엔인 스타형 블록공중합체의 물성을 개선하고 고분자 전해질의 매트릭스로서의 사용 가능성을 확인하기 위하여 스타형 폴리스티렌-부타디엔 공중합체의 수소화/술폰화 개질 실험을 행하였고, 다음의 결과를 얻었다. 1. 수소화제로 p-toluenesulfonylhydrazide/tri-n-propyl amine을 사용하였으며, 온도에 따른 수소화 반응 속도의 변화로부터 구한 스타형 SB 공중합체의 수소화 반응 활성화 에너지는 89kJ/mol이었다. 2. 수소화 반응에 의해 부타디엔 단위가 지방족 탄화수소로 변화되어 분산상인 PB 영역의 유리전이온도가 $50^{\circ}C$ 정도 증가하였으나, 열안정성은 다소 감소하였다. 3. 수소화된 SB(H-SB)를 acetyl sulfate를 사용하여 술폰화한 결과, $65^{\circ}C$의 반응온도에서 60분 이상 반응시키면 한계 술폰화 정도에 도달하며, 술폰화제이 양이 증가할수록 술폰화 정도는 증가하였다. 그러나, 한계 술폰화제의 양을 넘어서면 불용의 전해질이 얻어진다. 4. 술폰화 정도가 증가함에 따라 포화함수율과 이온전도도 모두 증가하며, 23 mol% 정도 술폰화된 경우 함수율과 이온전도도는 각각 18%, $1.6{\times}10^{-3}S/cm$이었다.

Keywords

References

  1. D. A. Hucul and S. F. Hahn, 'Catalytic Hydrogenation of Polystyrene', Adv Mater, 2000, 12(23), 1855-1858 https://doi.org/10.1002/1521-4095(200012)12:23<1855::AID-ADMA1855>3.0.CO;2-P
  2. B. H. Sohn, J. A. Cratt, J. K. Lee, and R. E. Cohen, 'Hydrogenation of Ring Opening Metathesis Polymerization Polymers', J Appl Polym Sci, 1995, 58, 1041-1046 https://doi.org/10.1002/app.1995.070580610
  3. D. J. Kinning, E. L. Thomas, and L. J. Fetters, 'Morphological Studies of Micelle Formation in Block Copolymer/homopolymer Blends', J Chem Phys, 1989, 90(10), 5806-5825 https://doi.org/10.1063/1.456388
  4. L. A. Mango and R. W. Lenz, 'Hydrogenation of Unsaturated Polymers with Diimide', Macromol Chem, 1973, 163, 13-36 https://doi.org/10.1002/macp.1973.021630102
  5. T. D. Nang, Y. Katabe, and Y. Minoura, 'Diimide Reduction of cis-1,4-polyisoprene with p-Toluenesulphonylhydrazide', Polymer, 1976, 17, 117-120 https://doi.org/10.1016/0032-3861(76)90079-3
  6. S. F. Hahn, 'An Improved Method for the Dimide Hydrogenation of Butadiene and Isoprene Containing Polymers', J Polym Sci: Part A: Polym Chem, 1992, 30, 397-408 https://doi.org/10.1002/pola.1992.080300307
  7. J. H. Hirschenhofer, D. B. Stauffer, R. R. Engleman, and M. G. Klett, 'Fuel Cell Handbook, $4^{TM}$ Ed.', FETC, 1998
  8. J. H. Lee and J. Won, 'Polymer Electrolyte Membrane for Fuel Cell', Polym Sci Technol, 2003, 14(4), 418-437
  9. V. Deimede, G. A. Voyiatzis, J. K. Kallitsis, L. Qingfeng, and N. J. Bjerrum, 'Miscibility Behavior of Polybenzimidazole/Sulfonated Polysulfone Blends for Use in Fuel Cell Applications', Macromolecules, 2000, 33, 7609-7617 https://doi.org/10.1021/ma000165s
  10. J. C. Lassegues, J. Grondin, M. Hernandez, and B. Maree, 'Proton Conducting Polymer Blends and Hybrid Organic Inorganic Materials', Solid State Ionics, 2001, 145, 37-45 https://doi.org/10.1016/S0167-2738(01)00909-2
  11. S. D. Flint and R. C. T. Slade, 'Investigation of Radiationgrafted PVDF-g-polystyrene-sulfonic-acid Ion Exchange Membranes for Use in Hydrogen Oxygen Fuel Cells', Solid State Ionics, 1997, 97, 299-307 https://doi.org/10.1016/S0167-2738(97)00037-4
  12. A. Mokrini and J. L. Acosta, 'New Ion Conducting Systems Based on Star Branched Block Copolymer', 2001, 42, 8817-8824 https://doi.org/10.1016/S0032-3861(01)00267-1
  13. G. E. Wnek and B. M. S-Ali, 'Ion-conducting Membrane for Fuel Cell', US Patent, 6,110,616(2000)
  14. J. Won, S. W. Choi, Y. S. Kang, H. Y. Ha, I-H. Oh, H. S. Kim, K. T. Kim, and W. H. Jo, 'Structural Characterization and Surface Modification of Sulfonated Polystyrene(ethylene-butylene)-styrene Triblock Proton Exchange Membranes', J Mem Sci, 2003, 214, 245-257 https://doi.org/10.1016/S0376-7388(02)00555-0
  15. I. Yamaoka, 'Toughened Polymer Blends Composed of a Ductile Styrene-buradiene-styrene Matrix with Brittle Methyl Methacrylate-styrene Particles', Polymer, 1995, 36, 3359-3368 https://doi.org/10.1016/0032-3861(95)99437-Y
  16. F. W. Bailey, 'Polymer Blend of Diene/vinyl Aromatic Block Copolymer and Styrene/acrylate Copolymer', US Patents, 4,386,190(1983)
  17. I. Yamaoka, 'Effects of Morphology on the Toughness of Styrene-butadiene-styrene Triblock Copolymer/methyl Methacrylate-styrene Copolymer Blends', Polymer, 1998, 39(10), 1765-1778 https://doi.org/10.1016/S0032-3861(97)00465-5
  18. H. S. Makowski, R. D. Lundberg, and G. H. Singhal, 'Flexible Polymeric Compositions Comprising a Normally Plastic Polymer Sulfonated to About 0.2 to About 10 Mole% Sulfonate', US Patent, 3,870,841(1975)
  19. R. A. Weiss, A. Sen, C. L. Willis, and L. A. Pottick, 'Block Copolymer Ionomers: I. Synthesis and Physical Properties of Sulphonated Poly(styrene-ethylenelbutylene-styrene)', Polymer, 1991, 32(10), 1867-1874 https://doi.org/10.1016/0032-3861(91)90378-V
  20. R. C.-C. Tsiang, W.-S. Yang, and M.-D. Tsai, 'Hydrogenation of Polystyrene-b-polybutadiene-b-polystyrene Block Copolymers Using a Metallocene/n-butyllithium Catalyst-the Role of n-butyllithium', Polymer, 1999, 40, 6351-6360 https://doi.org/10.1016/S0032-3861(98)00840-4
  21. N. Hinchiranan, K. K. Charmondusit, P. Prasassarakich, and G. L. Rempel, 'Hydrogenation of Synthetic cis-1,4-polyisoprene and Natural Rubber Catalyzed by $[Ir(CQD)py(PCy_3)]PF_6$', J Appl Polym Sci, 2006, 100(5), 4219-4233 https://doi.org/10.1002/app.23710
  22. N. Singha, S. Bhattacharjee, and S. Sivaram, 'Hydrogenation of Diene Elastomers, Their Properties and Applications: A Critical Review', Rubb Chem Technol, 1997, 70(3), 309-367 https://doi.org/10.5254/1.3538435
  23. B. Boutevin, M. Khamlichi, Y. Piertrasanta, and J. J. Robin, 'Synthesis and Characterization of a New Block Copolymer: Poly(buty lene terephthalate-co-olefin) Application on PP/ PBT Blend and PBT Homopolymer', J Appl Polym Sci, 1995, 55, 191-199 https://doi.org/10.1002/app.1995.070550201
  24. J. Brandrup, E. H. Irnmergut, E. A. Grulke, Eds, 'Polymer Handbook', 4th Ed., John Wiley & Sons, 1999, p.V/92