Power Amplifier Design using the Novel PBG Structure for Linearity Improvement and Size Reduction

선형성 개선과 크기 축소를 위한 새로운 PBG 구조를 이용한 전력증폭기 설계

  • Choi, Jae-Won (Information and Telecommunication Engineering, Soongsil University) ;
  • Seo, Chul-Hun (Information and Telecommunication Engineering, Soongsil University)
  • 최재원 (숭실대학교 정보통신전자공학부) ;
  • 서철헌 (숭실대학교 정보통신전자공학부)
  • Published : 2007.07.25

Abstract

This paper presents a novel photonic bandgap (PBG) structure for size reduction and linearity improvement in power amplifier. The proposed structure is a two-dimensional (2-D) periodic lattice patterned on a dielectric slab that does not require nonplanar fabrication process. Throughout the experi-mental results, this structure has more broad stopband and high suppression performance than conventional three cell PBG and distorted uniplanar compact-PBG (DUC-PBG). This new PBG structure can be applied with power amplifier for linearity improvement. The 3rd intermodulation distortion (IMD3) of the power amplifier using new PBG structure is -36.16 dBc for (code division multiple access) CDMA applications. Compared with power amplifier without the proposed PBG structure, improved IMD3 is -13.49 dBc.

본 논문은 전력증폭기의 크기를 줄이고 선형성을 개선하기 위한 새로운 광전자밴드갭 (PBG) 구조를 제시하였다. 제안된 구조는 비평면 제조 공정을 요구하지 않는 유전체 판위에 패턴을 뜬 2차원의 규칙적인 격자이다. 실험 결과를 통해서 보면, 이 구조는 접지 평면에 세 개의 셀을 식각시킨 기본적인 PBG와 distorted uniplanar compact_PBG (DUC_PBG)보다 더 넓은 저지대역과 더 높은 저지 특성을 갖는다. 이 새로운 PBG 구조는 선형성 개선을 위하여 전력증폭기에 적용되어 질 수 있다. 새로운 PBG 구조를 이용한 전력증폭기의 3차 혼변조 왜곡 (IMD3)은 코드분할 다중접속 (CDMA) 응용에서 -36.16 dBc이다. 제안된 PBG 구조가 없는 전력증폭기와 비교했을 때, 개선된 IMD3는 -13.49 dBc이다.

Keywords

References

  1. Fei-Ran Yang, Kuang-Ping Ma, Yongxi Qian, and Tatsuo Itoh, 'A Uniplanar Compact Photonic- Bandgap (UC_PBG) Structure and Its Applications for Microwave circuits,' IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 8, pp. 1509-1514, August 1999 https://doi.org/10.1109/22.780402
  2. Roberto Coccioli, Fei-Ran Yang, Kuang-Ping Ma, and Tatsuo Itoh, 'Aperture-Coupled Patch Antenna on UC_PBG Substrate,' IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2123-2130, November 1999 https://doi.org/10.1109/22.798008
  3. Bao-qin Lin, Qiu-rong Zheng, and Nai-chang Yuan, 'A Novel Planar PBG Structure for Size Reduction,' IEEE Microwave and Wireless Components Letters, vol. 16, no. 5, pp. 269-271, May 2006 https://doi.org/10.1109/LMWC.2006.873507
  4. Taesun Kim and Chulhun Seo, 'A Novel Photonic Bandgap Structure for Low-Pass Filter of Wide Stopband,' IEEE Microwave and Guided Wave Letters, vol. 10, no. 1, pp. 13-15, January 2000 https://doi.org/10.1109/75.842072
  5. Mi Ae Jang, Sung Yong Kim, Ki Kyung Jeon, Young Kim, and Yong Chae Jeong, 'Linearity Improvement of Power Amplifier using Modulation of Low Frequency IMD Signals,' Asia Pacific Microwave Conference 2005 Proceedings, vol. 2, 4-7 December 2005
  6. Jia-Sheng Hong, Michael J. Lancaster, 'Coulings of Microstrip Square Open-Loop Resonators for Cross-Coupled Planar Microwave Filters,' IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 12, pp. 2099-2109, December 1996 https://doi.org/10.1109/22.543968