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EXTENDED FUZZY EQUIVALENCE RELATIONS

Inheung Chon

Abstract. We define an extended fuzzy equivalence relation, dis-

cuss some basic properties of extended fuzzy equivalence relations,
find the extended fuzzy equivalence relation generated by a fuzzy

relation in a set, and give some lattice theoretic properties of ex-

tended fuzzy equivalence relations.

1. Introduction

The concept of a fuzzy relation was first proposed by Zadeh ([8]).
Subsequently, Goguen ([2]) and Sanchez ([7]) studied fuzzy relations in
various contexts. In [4] Nemitz discussed fuzzy equivalence relations,
fuzzy functions as fuzzy relations, and fuzzy partitions. Murali ([4])
developed some properties of fuzzy equivalence relations and certain
lattice theoretic properties of fuzzy equivalence relations. Gupta et
al. ([3]) defined a fuzzy G-equivalence relation on a set and develop
some properties of that relation. The standard definition of a reflexive
fuzzy relation µ on a set X, which most mathematicians or computer
scientists used in their papers, is µ(x, x) = 1 for all x ∈ X. We ex-
tend this standard definition to µ(x, x) ≥ ε > 0 for all x ∈ X and
inf
t∈X

µ(t, t) ≥ µ(y, z) for all y 6= z ∈ X, which is called e-reflexive

fuzzy relation in this note. Chon ([1]) defined an extended fuzzy con-
gruence based on the e-reflexive fuzzy relation and characterized those
congruences on semigroups.

In section 2 we define an extended fuzzy equivalence relation based
on the e-reflexive fuzzy relation and review some basic properties of
fuzzy relations which will be used in next sections. In section 3 we
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discuss some basic properties of extended fuzzy equivalence relations
and find the extended fuzzy equivalence relation generated by a fuzzy
relation on a set. In section 4 we find sufficient conditions for the
composition µ ◦ ν of two extended fuzzy equivalence relations µ and
ν on a set to be an extended fuzzy equivalence relation generated by
µ ∪ ν, show that the collection E(S) of all extended fuzzy equivalence
relations on a set S is a complete lattice, and show that if S is a group,
then Ek(S) = {µ ∈ E(S) : µ(c, c) = k for all c ∈ S} is a modular
lattice for 0 < ε ≤ k ≤ 1.

2. Preliminaries

In this section we define an extended fuzzy equivalence relation
and recall some basic properties of fuzzy relations which will be used
in next sections.

Definition 2.1. A function B from a set X to the closed unit
interval [0, 1] in R is called a fuzzy set in X. For every x ∈ B, B(x) is
called a membership grade of x in B.

The standard definition of a fuzzy reflexive relation µ in a set X
demands µ(x, x) = 1 for all x ∈ X, which seems to be too strong. We
redefine this standard definition as follows.

Definition 2.2. A fuzzy relation µ in a set X is a fuzzy subset of
X×X. µ is e-reflexive in X if µ(x, x) ≥ ε > 0 and inf

t∈X
µ(t, t) ≥ µ(x, y)

for all x, y ∈ X such that x 6= y. µ is symmetric in X if µ(x, y) = µ(y, x)
for all x, y in X. The composition λ ◦ µ of two fuzzy relations λ, µ in
X is the fuzzy subset of X ×X defined by

(λ ◦ µ)(x, y) = sup
z∈X

min(λ(x, z), µ(z, y)).

A fuzzy relation µ in X is transitive in X if µ◦µ ⊆ µ. A fuzzy relation
µ in X is called an extended fuzzy equivalence relation if µ is e-reflexive,
symmetric, and transitive.

Let FX be the set of all fuzzy relations in a set X. Then it is
easy to see that FX is a monoid under the operation of composition ◦
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and an extended fuzzy equivalence relation is an idempotent element
of FX .

Definition 2.3. Let µ be a fuzzy relation in a set X. µ−1 is
defined as a fuzzy relation in X by µ−1(x, y) = µ(y, x).

It is easy to see that (µ ◦ ν)−1 = ν−1 ◦ µ−1 for fuzzy relations µ
and ν.

Proposition 2.4. Let FX be a monoid of all fuzzy relations in
X and let φ : FX → FX be a map defined by φ(µ) = µ−1. Then φ is
an antiautomorphism and φ(µ−1) = (φ(µ))−1 = µ.

Proof. Straightforward. �

Proposition 2.5. Let µ be a fuzzy relation on a set X. Then
∪∞n=1 µn is the smallest transitive fuzzy relation on X containing µ,
where µn = µ ◦ µ ◦ · · · ◦ µ.

Proof. See Proposition 2.3 of [6]. �

Proposition 2.6. Let µ be a fuzzy relation on a set X. If µ is
symmetric, then so is ∪∞n=1 µn, where µn = µ ◦ µ ◦ · · · ◦ µ.

Proof. See Proposition 2.4 of [6]. �

Proposition 2.7. If µ is an e-reflexive fuzzy relation on a set X,
then µn+1(x, y) ≥ µn(x, y) for all natural numbers n and all x, y ∈ X.

Proof.

µ2(x, y) = (µ ◦ µ)(x, y) = sup
z∈X

min[µ(x, z), µ(z, y)]

≥ min[µ(x, x), µ(x, y)] = µ(x, y).

Suppose µk+1(x, y) ≥ µk(x, y) for all x, y ∈ X. Then

µk+2(x, y) = (µ ◦ µk+1)(x, y) = sup
z∈S

min[µ(x, z), µk+1(z, y)]

≥ sup
z∈S

min[µ(x, z), µk(z, y)] = (µ ◦ µk)(x, y) = µk+1(x, y).
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By the mathematical induction, µn+1(x, y) ≥ µn(x, y) for all natural
numbers n. �

Proposition 2.8. Let µ and each νi be fuzzy relations in a set
X for all i ∈ I. Then µ ◦ ( ∪

i∈I
νi) = ∪

i∈I
(µ ◦ νi), ( ∪

i∈I
νi) ◦ µ = ∪

i∈I
(νi ◦ µ),

µ ◦ ( ∩
i∈I

νi) ⊆ ∩
i∈I

(µ ◦ νi), and ( ∩
i∈I

νi) ◦ µ ⊆ ∩
i∈I

(νi ◦ µ).

Proof. Straightforward. �

3. Extended fuzzy equivalence relations

In this section we discuss some basic properties of extended fuzzy
equivalence relations and find the extended fuzzy equivalence relation
generated by a fuzzy relation.

Definition 3.1. Let µ be an extended fuzzy equivalence relation
in a set X. The set {y ∈ X : µ(y, x) > 0}, which is denoted by
[x], is called an equivalence class of x. The collection of equivalence
classes of X, denoted by X/µ, is called quotient of X by µ. That is,
X/µ = {[x] : x ∈ X}.

Proposition 3.2. Let µ be an extended fuzzy equivalence rela-
tion in a nonempty set X and let [x] be the equivalence class of x ∈ X.

(1) For every x ∈ X, [x] is a nonempty set.
(2) µ(x, y) > 0 iff [x] = [y].
(3) [x] ∩ [y] 6= ∅ iff µ(x, y) > 0.

Proof. (1) Straightforward.
(2) Suppose µ(x, y) > 0. Let a ∈ [x]. Then µ(a, x) > 0.

µ(a, y) ≥ sup
k∈X

min [µ(a, k), µ(k, y)] ≥ min [µ(a, x), µ(x, y)] > 0.

That is, a ∈ [y]. Thus [x] ⊆ [y]. Similarly we may show [y] ⊆ [x].
Hence [x] = [y]. Conversely suppose that [x] = [y]. Then x ∈ [y], that
is, µ(x, y) > 0.
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(3) Suppose that [x] ∩ [y] 6= ∅. Then there exists c ∈ X such that
µ(c, x) > 0 and µ(c, y) > 0. µ(x, y) ≥ sup

k∈X
min[µ(x, k), µ(k, y)] ≥

min [µ(x, c), µ(c, y)] > 0. Conversely suppose that µ(x, y) > 0. Then
x ∈ [y]. Since x ∈ [x], [x] ∩ [y] 6= ∅. �

Proposition 3.3. Let µ be an extended fuzzy equivalence rela-
tion in a nonempty set X. Then the quotient set X/µ is a partition of
X.

Proof. Straightforward from Proposition 3.2. �

Theorem 3.4. Let µ be a fuzzy relation on a set S. If µ is e-
reflexive, then so is ∪∞n=1 µn, where µn = µ ◦ µ ◦ · · · ◦ µ.

Proof. Clearly µ1 = µ is e-reflexive. Suppose µk is e-reflexive.
Then

µk+1(x, x) = (µk ◦ µ)(x, x) = sup
z∈S

min[µk(x, z), µ(z, x)]

≥ min[µk(x, x), µ(x, x)] ≥ ε > 0

for all x ∈ S. Let x, y ∈ S with x 6= y. Then

inf
t∈S

µk+1(t, t) = inf
t∈S

(µk ◦ µ)(t, t) = inf
t∈S

sup
z∈S

min[µk(t, z), µ(z, t)]

≥ inf
t∈S

min[µk(t, t), µ(t, t)] ≥ min [ inf
t∈S

µk(t, t), inf
t∈S

µ(t, t)]

≥ min[µk(x, z), µ(z, y)]

for all z ∈ S such that z 6= x and z 6= y. That is, inf
t∈S

µk+1(t, t) ≥

sup
z∈S−{x,y}

min[µk(x, z), µ(z, y)]. Clearly inf
t∈S

µ(t, t) ≥ min [µk(x, x),

µ(x, y)] and inf
t∈S

µk(t, t) ≥ min [µk(x, y), µ(y, y)]. Since µk+1(t, t) ≥

µk(t, t) ≥ µ(t, t) by Proposition 2.7,

inf
t∈S

µk+1(t, t) ≥ min [µk(x, x), µ(x, y)] and

inf
t∈S

µk+1(t, t) ≥ min [µk(x, y), µ(y, y)].
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Thus

inf
t∈S

µk+1(t, t) ≥ max [ sup
z∈S−{x,y}

min(µk(x, z), µ(z, y)),

min (µk(x, x), µ(x, y)),min (µk(x, y), µ(y, y))]

= sup
z∈S

min[µk(x, z), µ(z, y)] = (µk ◦ µ)(x, y)

= µk+1(x, y).

That is, µk+1 is e-reflexive. By the mathematical induction, µn is e-
reflexive for n = 1, 2, . . . . Thus inf

t∈S
[∪∞n=1 µn](t, t) = inf

t∈S
sup[µ(t, t), (µ◦

µ)(t, t), . . . ] ≥ sup [ inf
t∈S

µ(t, t), inf
t∈S

(µ ◦ µ)(t, t), . . . ] ≥ sup[µ(x, y), (µ ◦
µ)(x, y), . . . ] = [∪∞n=1µ

n](x, y). Clearly [∪∞n=1 µn](x, x) ≥ ε > 0. Hence
∪∞n=1 µn is e-reflexive. �

Proposition 3.5. Let µ and ν be extended fuzzy equivalence
relations in a set X. Then µ ∩ ν is an extended fuzzy equivalence
relation.

Proof. It is easy to see that µ ∩ ν is e-reflexive and symmetric.
By Proposition 2.8, [(µ ∩ ν) ◦ (µ ∩ ν)] ⊆ [µ ◦ (µ ∩ ν)] ∩ [ν ◦ (µ ∩ ν)] ⊆
[(µ◦µ)∩(µ◦ν)]∩ [(ν ◦µ)∩(ν ◦ν)] ⊆ [µ∩(µ◦ν)]∩ [(ν ◦µ)∩ν] ⊆ µ∩ν.�

It is easy to see that even though µ and ν are extended fuzzy equiv-
alence relations, µ∪ ν is not necessarily an extended fuzzy equivalence
relation. We find the extended fuzzy equivalence relation generated by
µ ∪ ν in the following proposition.

Proposition 3.6. Let µ and ν be extended fuzzy equivalence
relations in a set X. Then the extended fuzzy equivalence relation
generated by µ∪ ν is ∪∞n=1(µ∪ ν)n = (µ∪ ν)∪ [(µ∪ ν) ◦ (µ∪ ν)]∪ . . . .

Proof. Clearly (µ ∪ ν)(x, x) ≥ ε > 0.

inf
t∈X

(µ ∪ ν)(t, t) = inf
t∈X

max(µ(t, t), ν(t, t))

≥ max ( inf
t∈X

µ(t, t), inf
t∈X

ν(t, t))

≥ max (µ(x, y), ν(x, y)) = (µ ∪ ν)(x, y)
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for all x 6= y in X. That is, µ ∪ ν is e-reflexive. By Theorem 3.4,
∪∞n=1(µ ∪ ν)n is e-reflexive. Since µ ∪ ν is symmetric, ∪∞n=1(µ ∪ ν)n

is symmetric by Proposition 2.6. By Proposition 2.5, ∪∞n=1(µ ∪ ν)n

is transitive. Hence ∪∞n=1(µ ∪ ν)n is an extended fuzzy equivalence
relation. Let λ be an extended fuzzy equivalence relation in a set X
containing µ∪ ν. Then ∪∞n=1(µ∪ ν)n ⊆ ∪∞n=1λ

n = λ∪ (λ ◦ λ)∪ (λ ◦ λ ◦
λ) ∪ · · · ⊆ λ ∪ λ ∪ · · · ⊆ λ. Thus ∪∞n=1(µ ∪ ν)n is the extended fuzzy
equivalence relation generated by µ ∪ ν. �

We now turn to the characterization of the extended fuzzy equiv-
alence relation generated by a fuzzy relation.

Theorem 3.7. Let µ be a fuzzy relation in a set X. Then the
extended fuzzy equivalence relation in X generated by µ is

∪∞n=1 (µ ∪ µ−1 ∪ θ)
n

= (µ ∪ µ−1 ∪ θ) ∪ ((µ ∪ µ−1 ∪ θ) ◦ (µ ∪ µ−1 ∪ θ)) ∪ . . . ,

where θ is a fuzzy relation in X such that θ(x, x) ≥ ε > 0, θ = θ−1,
θ(x, y) ≤ µ(x, y), and inf

t∈X
θ(t, t) ≥ max [µ(x, y), µ−1(x, y), θ(x, y)] for

all x 6= y in X.

Proof. Let µ1 = µ ∪ µ−1 ∪ θ. Then

µ1(x, x) = max [µ(x, x), µ−1(x, x), θ(x, x)] ≥ ε > 0.

inf
t∈X

µ1(t, t) = inf
t∈X

max[µ(t, t), µ−1(t, t), θ(t, t)] ≥ inf
t∈X

θ(t, t)

≥ max[µ(x, y), µ−1(x, y), θ(x, y)] = µ1(x, y).

Thus µ1 is e-reflexive. By Theorem 3.4, ∪∞n=1µ
n
1 is e-reflexive. Since

θ = θ−1, µ1(x, y) = (µ ∪ µ−1 ∪ θ)(x, y) = max[µ(x, y), µ−1(x, y), θ−1

(x, y)] = max[µ−1(y, x), µ(y, x), θ(y, x)] = (µ∪µ−1∪θ)(y, x) = µ1(y, x).
Thus µ1 is a symmetric. By Proposition 2.6, ∪∞n=1µ

n
1 is symmetric. By

Proposition 2.5, ∪∞n=1µ
n
1 is transitive. Hence ∪∞n=1 µn

1 is an extended
fuzzy equivalence relation containing µ. Let ν be an extended fuzzy
equivalence relation containing µ. Then µ(x, y) ≤ ν(x, y), µ−1(x, y) =
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µ(y, x) ≤ ν(y, x) = ν(x, y), and θ(x, y) ≤ µ(x, y) ≤ ν(x, y). Thus
µ1 ⊆ ν. Suppose that µk

1 ⊆ ν. Then µk+1
1 (x, y) = (µ1 ◦ µk

1)(x, y) =
sup
z∈X

min[µ1(x, z), µk
1(z, y)] ≤ sup

z∈X
min[ν(x, z), ν(z, y)] = (ν ◦ ν)(x, y).

Since ν is transitive, µk+1
1 ⊆ ν ◦ν ⊆ ν. By the mathematical induction,

µn
1 ⊆ ν for all natural numbers n. Thus ∪∞n=1 µn

1 = µ1 ∪ (µ1 ◦ µ1) ∪
(µ1 ◦ µ1 ◦ µ1) · · · ⊆ ν. �

4. Lattice of extended fuzzy equivalence relations

In this section we discuss lattice theoretic properties of extended
fuzzy equivalence relations. Let E(S) be the collection of all extended
fuzzy equivalence relations on a set S.

Theorem 4.1. (E(S),≤) is a complete lattice, where ≤ is a rela-
tion on the set of all extended fuzzy equivalence relations on S defined
by µ ≤ ν iff µ(x, y) ≤ ν(x, y) for all x, y ∈ S.

Proof. Clearly ≤ is a partial order relation. It is easy to check
that the relation σ defined by σ(x, y) = 1 for all x, y ∈ S is in E(S)
and the relation λ defined by λ(x, y) = ε for x = y and λ(x, y) = 0
for x 6= y is in E(S). Also σ is the greatest element and λ is the
least element of E(S) with respect to the ordering ≤. Let {µj}j∈J

be a non-empty collection of extended fuzzy equivalence relations in
E(S). Let µ(x, y) = inf

j∈J
µj(x, y) for all x, y ∈ S. It is easy to see

that µ(x, x) ≥ ε for all x ∈ S, inf
t∈X

µ(t, t) ≥ µ(y, z) for all y 6= z ∈ X,

and µ = µ−1. µ ◦ µ(x, y) = sup
z∈X

min[ inf
j∈J

µj(x, z), inf
j∈J

µj(z, y)] =

sup
z∈X

inf
j∈J

inf
i∈J

min[µj(x, z), µi(z, y)] ≤ inf
j∈J

sup
z∈X

min[µj(x, z), µj(z, y)] =

inf
j∈J

µj ◦µj(x, y) ≤ inf
j∈J

µj(x, y) = µ(x, y). That is, µ ∈ E(S). Since µ is

the greatest lower bound of {µj}j∈J , (E(S),≤) is a complete lattice.�

Let Ek(S) = {µ ∈ E(S) : µ(c, c) = k for all c ∈ S}. It is easy
to see that Ek(S) is a sublattice of E(S) for 0 < ε ≤ k ≤ 1. We
define addition and multiplication on Ek(S) by µ + ν =< µ ∪ ν > and
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µ ·ν = µ∩ν, where < µ∪ν > is the extended fuzzy equivalence relation
generated by µ ∪ ν.

Definition 4.2. A lattice (L,+, ·) is called modular if (x+y)·z ≤
x + (y · z) for all x, y, z ∈ L with x ≤ z.

Lemma 4.3. Let µ and ν be extended fuzzy equivalence relations
in a set X such that µ(t, t) = ν(t, t) for all t ∈ X. If µ ◦ ν = ν ◦ µ,
then µ ◦ ν is the extended fuzzy equivalence relation in X generated
by µ ∪ ν.

Proof.

(µ ◦ ν)(x, x) = sup
z∈X

min[µ(x, z), ν(z, x)]

≥ min(µ(x, x), ν(x, x)) ≥ ε > 0,

inf
t∈X

(µ ◦ ν)(t, t) = inf
t∈X

sup
z∈X

min[µ(t, z), ν(z, t)]

≥ inf
t∈X

min[µ(t, t), ν(t, t)] ≥ min[µ(x, z), ν(z, y)]

for all z ∈ X. Thus

inf
t∈X

(µ ◦ ν)(t, t) ≥ sup
z∈X

min[µ(x, z), ν(z, y)] = (µ ◦ ν)(x, y).

That is, µ ◦ ν is e-reflexive. Since µ and ν are symmetric, (µ ◦ ν)−1 =
ν−1 ◦ µ−1 = ν ◦ µ = µ ◦ ν. Thus µ ◦ ν is symmetric. Since µ and
ν are transitive and the operation ◦ is associative, (µ ◦ ν) ◦ (µ ◦ ν) =
µ ◦ (ν ◦ µ) ◦ ν = µ ◦ (µ ◦ ν) ◦ ν = (µ ◦ µ) ◦ (ν ◦ ν) ⊆ µ ◦ ν. Hence
µ ◦ ν is an extended fuzzy equivalence relation. Let x, y ∈ X with
x 6= y. Since ν(r, r) ≥ µ(s, r), (µ◦ν)(x, y) = sup

z∈X
min[µ(x, z), ν(z, y)] ≥

min(µ(x, y), ν(y, y)) = µ(x, y). Since µ(p, p) ≥ ν(p, q), (µ ◦ ν)(x, y) =
sup
z∈X

min[µ(x, z), ν(z, y)] ≥ min(µ(x, x), ν(x, y)) = ν(x, y). Thus (µ ◦

ν)(x, y) ≥ max(µ(x, y), ν(x, y)) = (µ∪ν)(x, y) for x 6= y. (µ◦ν)(t, t) =
sup
z∈X

min[µ(t, z), ν(z, t)] ≥ min(µ(t, t), ν(t, t)) = (µ ∪ ν)(t, t). That is,

µ ∪ ν ⊆ µ ◦ ν. Let λ be an extended fuzzy equivalence relation in X
containing µ∪ν. Since λ is transitive, µ◦ν ⊆ (µ∪ν)◦(µ∪ν) ⊆ λ◦λ ⊆ λ.
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Thus µ ◦ ν is the extended fuzzy equivalence relation generated by
µ ∪ ν. �

It is well known that if µ and ν are equivalence relations on a set
S and µ◦ν = ν ◦µ, then µ◦ν is the equivalence relation on S generated
by µ ∪ ν. Lemma 4.3 may be considered as a generalization of this in
extended fuzzy equivalent relation.

Theorem 4.4. Let 0 < ε ≤ k ≤ 1, let S be a set, and let H be
a sublattice of (Ek(S),+, ·) such that µ ◦ ν = ν ◦ µ for all µ, ν ∈ H.
Then H is a modular lattice.

Proof. Let µ, ν, ρ ∈ H with µ ≤ ρ. Let x, y ∈ S.

min [(µ ◦ ν)(x, y), ρ(x, y)] = sup
z∈S

min [µ(x, z), ν(z, y), ρ(x, y)]

≤ sup
z∈S

min[µ(x, z), ρ(x, z), ν(z, y), ρ(x, y)]

≤ sup
z∈S

min[µ(x, z), ν(z, y), ρ(z, y)]

= [µ ◦min(ν, ρ)](x, y).

Thus (µ ◦ ν) · ρ ≤ µ ◦ (ν · ρ). Since µ, ν ∈ Ek(S), µ(c, c) = ν(c, c) = k
for all c ∈ S. By Lemma 4.3, µ ◦ ν is the extended fuzzy equivalence
relation generated by µ ∪ ν. That is, µ + ν = µ ◦ ν. Similarly we may
show µ + (ν · ρ) = µ ◦ (ν · ρ). Thus (µ + ν) · ρ ≤ µ + (ν · ρ). Hence H
is modular. �

Proposition 4.5. If S is a group, then µ ◦ ν = ν ◦ µ for all
µ, ν ∈ Ek(S).

Proof. Straightforward. �

Corollary 4.6. If S is a group and 0 < ε ≤ k ≤ 1, then
(Ek(S),+, ·) is modular.

Proof. By Theorem 4.4 and Proposition 4.5, (Ek(S),+, ·) is mod-
ular. �
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