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(L,M)-NEIGHBORHOOD SPACES

Y.C. Kim∗, A. Ramadan and M.A. Usama

Abstract. We introduce the notions of (L, M)-neighborhood spaces
and (2, M)-fuzzifying neighborhood spaces. We investigate the rela-
tions among (L, M)-neighborhood spaces, (L, M)-topological spaces
and (2, M)-fuzzifying neighborhood spaces.

1. Introduction and preliminaries

Höhle [8-11] introduced the notions of L-fuzzy topology and L-filters
on a completely quasi-monoidal lattice (including GL-monoid) L in-
stead of a completely distributive lattice or a unit interval as the exten-
sions of fuzzy topologies [3,16,18] and fuzzy filters [1,2,4-7]. Kotzé[14]
introduced an (L,M)-topological space as a general approach where L
and M are frames with 0 and 1. Kim et al.[12] introduced notions of
(L,M)-topological spaces as an extension of that of Kotzé [11]. Here,
L is a completely distributive lattice with 0 and 1 and M is a strictly
two-sided, commutative quantale as an extension of a frame.

In this paper, we introduce notions of (L,M)-neighborhood spaces
and (2, M)-fuzzifying neighborhood spaces with respect to Kim [12] as
an extension of Demirci [4]. We investigate the relations among (L,M)-
neighborhood spaces, (L,M)-topological spaces and (2,M)-fuzzifying
neighborhood spaces.

In this paper, let X be a nonempty set and L = (L,≤,∨,∧,′ ) a
completely distributive lattice with the least element 0 and the greatest
element 1 in L with an order reversing involution ′. The family LX

denotes the set of all fuzzy subsets of a given set X. For each α ∈ L,
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let α denote the constant fuzzy sets of X. We denote the characteristic
function of a subset A of X by 1A. A fuzzy point xt for t ∈ L(t 6= 0)
is an element of LX such that

xt(y) =
{

t, if y = x,

0, if y 6= x.

The set of all fuzzy points in X is denoted by Pt(X). We say that
xt q λ if xt 6≤ λ′. If xt ≤ λ′, we denote xt q λ.

Let M = (M,≤,∨,∧,⊥,>) be a completely distributive lattice with
the least element ⊥ and the greatest element > in M .

Definition 1.1 ([8-11,17]). A triple (M,≤,¯) is called a strictly
two-sided, commutative quantale (stsc-quantale, for short) iff it satisfies
the following properties:

(M1) (M,¯) is a commutative semigroup,
(M2) a = a¯>, for each a ∈ M ,
(M3) ¯ is distributive over arbitrary joins, i.e.,

(
∨

i∈Γ

ai)¯ b =
∨

i∈Γ

(ai ¯ b).

Remark 1.2. [8-11,13,17](1) Each frame is a stsc-quantale. In par-
ticular, the unit interval ([0, 1],≤,∧, 0, 1) is a stsc-quantale .

(2) Every left continuous t-norm t on ([0, 1],≤, t) with ¯ = t is a
stsc-quantale.

(3) Every GL-monoid is a stsc-quantale.

Definition 1.3 ([12,14]). A map T : LX → M is called an (L, M)-
topology on X if it satisfies the following conditions:

(LO1) T (0) = T (1) = >,
(LO2) T (µ1 ∧ µ2) ≥ T (µ1)¯ T (µ2), for all µ1, µ2 ∈ LX ,
(LO3) T (

∨
i∈Λ µi) ≥

∧
i∈Λ T (µi), for any {µi}i∈Λ ⊂ LX .

The pair (X, T ) is called an (L,M)-topological space.

Let (X, T1) and (Y, T2) be (L,M)-topological spaces. A map φ :
(X, T1) → (Y, T2) is called LF -continuous iff T2(λ) ≤ T1(φ←(λ)), for
all λ ∈ LY .
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Remark 1.4 ([12]). Let L = {0, 1} be given and 2X ∼= P (X) in
a sense 1A ∈ 2X iff A ∈ P (X). A map τ : P (X) → M is called a
(2,M)-fuzzifying topology on X if it satisfies the following conditions:

(O1) τ(X) = τ(∅) = >,
(O2) τ(A ∩B) ≥ τ(A)¯ τ(B),for all A,B ∈ P (X),
(O3) τ(

⋃
i∈Λ Ai) ≥

∧
i∈Λ τ(Ai), for any {Ai}i∈Λ ⊂ P (X).

The pair (X, τ) is called a (2,M)-fuzzifying topological space.
Let (X, τ1) and (Y, τ2) be (2,M)-fuzzifying topological spaces. A

map φ : (X, τ1) → (Y, τ2) is called fuzzifying continuous iff τ2(A) ≤
τ1(φ−1(A)), ∀A ∈ P (Y ).

2. (L,M)-filter spaces

Definition 2.1. A map F : LX → M is called an (L,M)-filter on
X if it satisfies the following conditions:

(LF1) F(0) = ⊥ and F(1) = >.
(LF2) F(λ ∧ µ) ≥ F(λ)¯F(µ) for all λ, µ ∈ LX .
(LF3) If λ ≤ µ, then F(λ) ≤ F(µ) for all λ, µ ∈ LX .

The pair (X,F) is called an (L,M)-filter space. Let (X,F1) and (Y,F2)
be (L,M)-filter spaces. A map φ : (X,F1) → (Y,F2) is called a filter
map iff F2(µ) ≤ F1(φ←(µ)), for all µ ∈ LY .

Remark 2.2. In the sense in Remark 1.4, a map F : P (X) → M is
called a (2, M)-fuzzifying filter on X if it satisfies the following condi-
tions:

(F1) F (X) = > and F (∅) = ⊥,
(F2) F (A ∩B) ≥ F (A)¯ F (B), for all A,B ∈ P (X),
(F3) If A ⊂ B, then F (A) ⊂ F (B) for any A,B ∈ P (X).

The pair (X, F ) is called an (2,M)-fuzzifying filter spaces. Let (X,F1)
and (Y, F2) be (2,M)-fuzzifying filter spaces. A map φ : (X, F1) →
(Y, F2) is called a fuzzifying filter map iff F2(A) ≤ F1(φ−1(A)), for all
A ∈ P (Y ).

Remark 2.3. (1) If L = ([0, 1],∧) and M = {0, 1}, (L,M)-filter
space is the concept of Chang [3].

(2) If L = {0, 1} and M = ([0, 1],¯ = ∧), (L,M)-filter space is the
concept of generalised filter [1,2].
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(3) If L and M are frames with 0 and 1, (L,M)-filter space is the
concept of Gähler [5,6].

Theorem 2.4. Let (X,F) be an (L,M)-filter space. We define a
function TF : LX → M as follows:

TF (λ) =
{ F(λ), if λ 6= 0,

>, if λ = 0.

Then (X, TF ) is an (L,M)-topological space.

Proof. We only show the condition (LO3). For λj ∈ LX , since
λj ≤

∨
j∈J λj for all j ∈ J , we have F(λj) ≤ F(

∨
j∈J λj), so

∧

j∈J

TF (λj) ≤ TF (
∨

j∈J

λj).

¤

Theorem 2.5. Let (X,F ) be a (2,M)-fuzzifying filter space. We
define a function FF : LX → M as follows:

FF (λ) =
∧

r∈L

F (λr),

where λr = {x ∈ X : λ(x) ≥ r} for r ∈ L − {0}. Then FF is an
(L,M)-filter.

Proof. (LF1) Clear.
(LF2) For each λ, µ ∈ LX , we have

FF (λ ∧ µ) =
∧

r∈L

F
(
(λ ∧ µ)r

)
=

∧

r∈L

F (λr ∩ µr)

≥
∧

r∈L

(
F (λr)¯ F (µr)

)
≥

∧

r∈L

F (λr)¯
∧

r∈L

F (µr)

= FF (λ)¯FF (µ).

(LF3) If λ ≤ µ, then λr ⊂ µr. Thus

FF (λ) =
∧

r∈L

F (λr) ≤
∧

r∈L

F (µr) = FF (µ)

¤
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Lemma 2.5. Let A ∈ P (X) and α ∈ L − {0}. Then FF (α · 1A) =
F (A).

Theorem 2.6. Let (X,F1), (Y, F2) be (2, M)-fuzzifying filter spaces.
A map φ : (X,F1) → (Y, F2) is a fuzzifying filter map iff φ : (X,FF1) →
(Y,FF2) is a filter map.

Proof. For each µ ∈ LY , we have

FF1(φ
←(µ)) =

∧

r∈L

F1((φ←(µ))r) ≥
∧

r∈L

F2(µr) = FF2(µ).

Conversely, suppose there exists A ∈ P (X) such that F1(φ−1(A)) 6≥
F2(A). It implies FF1(1φ−1(A)) = F1(φ−1(A)) 6≥ F2(A) = FF2(1A). ¤

Example 2.7. Let X = {x, y, z} be a set . Define a binary op-
eration ⊗ on M = [0, 1] by x ⊗ y = max{0, x + y − 1}. Then M =
([0, 1],≤,⊗) is a stsc-quantale. Define a (2,M)-fuzzifying topology
F : P (X) → [0, 1] as follows:

F (A) =





1, if A = X

0.8, if A = {x, y},
0.6, if A = {y},
0.7, if B = {y, z},
0, otherwise.

For λ, µ ∈ [0, 1]X with

λ(x) = 0.3, λ(y) = 0.7, λ(z) = 0.5, µ(x) = 0.7, µ(y) = 0.2, µ(z) = 0.5,

we have

(λ)r ∈ {{y}, {y, z}, X}, (µ)r ∈ {{x}, {x, z}, X}.

Hence FF (λ) = 0.6 and FF (µ) = 0.
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3. (L,M)-neighborhood spaces.

Definition 3.1. An (L,M)-neighborhood system on X is a set Q =
{Qxt

| xt ∈ Pt(X)} of maps Qxt
: LX → M such that for each λ, µ ∈

LX ,we have
(LN1) Qxt is an (L,M)-filter on X.
(LN2) Qxt

(λ) > ⊥ implies xtqλ.

(LN3) Qxt(λ) =
∨

xtqµ≤λ

( ∧
ytqµQyt(µ)

)
.

The pair (X,Q) is called an (L,M)-neighborhood space.

Let (X,Q1) and (Y,Q2) be (L,M)-neighborhood spaces. A func-
tion φ : (X,Q1) → (Y,Q2) is called an LN -map if (Q1)xt(φ

←(λ)) ≥
(Q2)φ→(xt)(λ) for all λ ∈ LY and for all xt ∈ Pt(X).

Remark 3.2. By the sense of Remark 2.2, since x1 q 1A iff x ∈ A,
a map Nx : P (X) → M is called a (2,M)-fuzzifying neighborhood of
x ∈ X if it satisfies the following conditions:

(N1) Nx is a (2,M)-filter on X.
(N2) Nx(A) > ⊥ implies x ∈ A.
(N3)Nx(A) =

∨
x∈B⊂A(

∧
y∈B Ny(B)).

A set N = {N x | x ∈ X} is called a (2,M)-fuzzifying neighborhood
system on X. A map f : (X,N1) → (Y,N2) is called a N -fuzzifying
map if for each A ∈ P (Y ) and for each x ∈ X, (N1)x(f−1(A))) ≥
(N2)f(x)(A).

Theorem 3.3. Let (X, T ) be an (L, M)-topological space and xt ∈
Pt(X). Define a map QTxt

: LX → M as:

QTxt
(λ) =

{ ∨{T (µ) | xt q µ ≤ λ} if xt q λ,

0 if xtq λ.

Then (1) QT = {QTxt
| xt ∈ Pt(X)} is an (L,M)-neighborhood system

on X,
(2) if t < s for t, s ∈ L, then QTxt

(λ) ≤ QTxs
(λ).

Proof. (1) (LF1) and (LF3) are easily proved.
(LF2) Suppose there exist λ, µ ∈ LX such that

QTxt
(λ ∧ µ) 6≥ QTxt

(λ)¯QTxt
(µ).
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By the definition of QTxt
(λ) and (M3) of Definition 1.1, there exists

λ1 ∈ LX with xt q λ1 ≤ λ such that

QTxt
(λ ∧ µ) 6≥ T (λ1)¯QTxt

(µ).

Again, by the definition of QTxt
(µ) and (M3) of Definition 1.1, there

exists µ1 ∈ LX with xt q µ1 ≤ µ such that

QTxt
(λ ∧ µ) 6≥ T (λ1)¯ T (µ1).

Since xt q (λ1 ∧ µ1) ≤ λ ∧ µ, we have

QTxt
(λ ∧ µ) ≥ T (λ1 ∧ µ1) ≥ T (λ1)¯ T (µ1).

It is a contradiction. Hence

QTxt
(λ ∧ µ) ≥ QTxt

(λ)¯QTxt
(µ), ∀λ, µ ∈ LX

So, Qxt is an (L,M)-filter on X.
(LN2) It is easy from the definition of QTxt

.
(LN3) For all λ ∈ LX with xtqµ ≤ λ, we have

T (µ) ≤
∧
{QTys

(µ) | ys q µ} ≤ QTxt
(µ) ≤ QTxt

(λ).

Therefore,

QTxt
(λ) =

∨

xtqµ≤λ

T (µ) ≤
∨

xtqµ≤λ

( ∧
ys q µ

QTys
(µ)

)
≤ QTxt

(λ).

This means that QTxt
(λ) =

∨
xtqµ≤λ

(∧
ys q µQTys

(µ)
)
.

(2) For t < s with t, s ∈ L and ∀λ ∈ LX , since

{µ ∈ LX | xt q µ ≤ λ} ⊂ {ρ ∈ LX | xs q ρ ≤ λ},

we have QTxt
(λ) ≤ QTxs

(λ). ¤
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Example 3.4. Let X = {x, y} be a set and L = M = [0, 1] a
completely distributive lattice. Define a binary operation ⊗ on M =
[0, 1] by x⊗y = max{0, x+y−1}. Then ([0, 1],≤,⊗) is a stsc-quantale.
Let µ, ρ ∈ [0, 1]X be defined as follows:

µ(x) = 0.6, µ(y) = 0.3 ρ(x) = 0.5, ρ(y) = 0.7.

We define an (L,M)-topology T : [0, 1]X → [0, 1] as follows:

T (λ) =





1, if λ = 1, 0
0.8, if λ = µ,

0.3, if λ = ρ,

0.7, if λ = µ ∨ ρ,

0.2, if λ = µ ∧ ρ,

0, otherwise.

We obtain QTx0.5
,QTy0.8

: [0, 1]X → [0, 1] as:

QTx0.5
(λ) =





1 if λ = 1,

0.8 if µ ≤ λ 6= 1,

0 otherwise.
QTy0.8

(λ) =





1 if λ = 1,

0.8 if µ ≤ λ 6= 1,

0.3 if ρ ≤ λ 6≥ µ,

0.2 if ρ ∧ µ ≤ λ 6≥ ρ,

0 otherwise.

From Theorem 3.3, we can obtain the following corollary.

Corollary 3.5. Let (X, τ) be a (2,M)-fuzzifying topological space.
We define a function (Nτ )x : P (X) → M by

(Nτ )x(A) =
∨

x∈B⊂A

τ(B).

Then (Nτ )x is a (2,M)-fuzzifying neighborhood of x ∈ X.
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Theorem 3.6. Let Q = {Qxt
: LX → M | xt ∈ Pt(X)} be a family

of Qxt
satisfying (LN1) and (LN2) of Definition 3.1. We define a map

T Q : LX → M as follows:

T Q(λ) =
{ ∧ {Qxt

(λ) | xt q λ} if λ 6= 0

> if λ = 0.

Then we have the following properties.
(1) T Q is an (L, M)-topology on X.
(2) If Q = {Qxt

| xt ∈ Pt(X)} is an (L, M)-neighborhood system

on X, then QT Qxt
= Qxt , for all xt ∈ Pt(X).

(3) If Q1 and Q2 are (L, M)-neighborhood systems on X such that
T Q1 = T Q2 , then Q1 = Q2.

Proof. (1) (LO1) is trivial.
(LO2) For λ, µ ∈ LX , we have

T Q(λ ∧ µ)

=
∧
{Qxt(λ ∧ µ) | xtq(λ ∧ µ)}

≥
∧
{Qxt(λ)¯Qxt(µ) | xt q (λ ∧ µ)}

≥
(∧

{Qxt(λ) | xtq(λ ∧ µ)}
)
¯

( ∧
{Qxt(µ) | xt q (λ ∧ µ)}

)

≥
(∧

{Qxt(λ) | xtqλ}
)
¯

( ∧
{Qxt(µ) | xt q µ}

)

= T Qxt
(λ)¯ T Qxt

(µ).

(LO3) Suppose T Q(
∨

j∈J µj) 6≥
∧

j∈J T Q(µj). Then there exists a
family {µj | xtq(

∨
j∈J µj)} such that

Qxt(
∨

j∈J

µj) 6≥
∧

j∈J

Qxt(µj).

Since xtq(
∨

j∈J µj), there exists j ∈ J such that xtqµj such that

Qxt(
∨

j∈J

µj) 6≥ Qxt(µj).



130 Y.C. Kim, A. Ramadan and M.A. Usama

It is a contradiction for a filter Qxt
. Hence the result holds.

(2)

QT Qxt
(λ) =

∨
{T Q(µ) | xtqµ ≤ λ}

=
∨ { ∧

{Qys
(µ) | ys q µ} | xtqµ ≤ λ

}

= Qxt(λ) (by (LN 3)).

(3) Since T Q1 = T Q2 , for λ ∈ LX and xt ∈ Pt(X), we have

(Q1)xt(λ) =
∨ { ∧

{(Q1)ys(µ) | ys q µ} | xtqµ ≤ λ
}

=
∨ {

T Q1(µ) | xtqµ ≤ λ
}

=
∨ {

T Q2(µ) | xtqµ ≤ λ
}

=
∨ { ∧

{(Q2)ys(µ) | ys q µ} | xtqµ ≤ λ
}

= (Q2)xt(λ).

Hence Q1 = Q2. ¤

Corollary 3.7. Let Nx : P (X) → M be a map satisfying (N1)
and (N2) for all x ∈ X. We define a map τN : P (X) → M by

τN (A) =
∧

x∈A

Nx(A).

Then:
(1) (X, τN ) is a (2,M)-fuzzifying topological space,
(2) if N is a (2,M)-fuzzifying neighborhood system, then (NτN )x =

Nx.
(3) if N1 and N2 are (2,M)-fuzzifying neighborhood systems on X

such that τN1 = τN2 , then N1 = N2.

The following lemma is easily proved.

Lemma 3.8. If xtqλ, then there exists µxt ∈ LX such that xtqµxt ≤
λ. Thus λ =

∨
xtqλ µxt .



(L, M)-neighborhood spaces 131

Theorem 3.9. Let (X, T ) be an (L,M)-topological space and QT
an (L,M)-neighborhood system in (X, T ). Then T = T QT .

Proof. Since QTxt
(λ) =

∨{T (µ) | xt q µ ≤ λ} ≥ T (λ) for all xt q λ,

we have
∧ {QTxt

(λ) | xt q λ} ≥ T (λ). So, T QT ≥ T .
Conversely, there exists λ ∈ LX such that T QT (λ) 6≤ T (λ). For each

xt ∈ P (X) with xt q λ, if xt q µxt ≤ λ, then by Lemma 3.8, we get
λ =

∨
xt q λ µxt . So,

T (λ) = T (
∨

µxt) ≥
∧
T (µxt).

Thus,
∧ T (µxt) 6≥ T QT (λ) =

∧{QTxt
(λ) | xt q λ}. There exists µxt

with xtqµxt ≤ λ such that

T (µxt) 6≥
∧
{QTxt

(λ) | xt q λ}

It is a contradiction. Thus, T ≥ T QT . ¤

Corollary 3.10. Let (X, τ) be a (2,M)-fuzzifying topological space
and Nτ a (2,M)-fuzzifying neighborhood system in (X, T ). Then
τ = τNτ .

Theorem 3.11. Let (X,Q1), (Y,Q2) be (L,M)-neighborhood spaces.
A mapping φ : (X,Q1) → (Y,Q2) is an LN -map iff φ : (X, T Q1) →
(Y, T Q2) is LF -continuous.

Proof. Since ∀λ ∈ LY ,∀xt ∈ P (X), xtqφ
←(λ) if and only if (φ→(xt) =

φ(x)t)qλ and

{yt ∈ Pt(Y ) | ytqλ} ⊃ {φ(x)t ∈ Pt(Y ) | xt ∈ Pt(X), φ(x)tqλ},

we have

T Q2(λ) =
∧
{(Q2)yt(λ) | yt q λ}

≤
∧
{(Q2)φ→(xt)(λ) | φ→(xt) q λ}

≤
∧
{(Q1)xt(φ

←(λ)) | xt q φ←(λ)}
= T Q1(φ←(λ)).
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Thus, φ : (X, T Q1) → (Y, T Q2) is LF -continuous.
Conversely, since ∀λ ∈ LY , T Q2(λ) ≤ T Q1(φ←(λ)), Q1 = QT Q1 and

Q2 = QT Q2 , we have

(Q2)φ→(xt)(λ) =
∨
{T Q2(µ) | φ→(xt) q µ ≤ λ}

≤
∨
{T Q2(µ) | xt q φ←(µ) ≤ φ←(λ)}

≤
∨
{T Q1(φ←(µ)) | xt q φ←(µ) ≤ φ←(λ)}

≤ (Q1)xt(φ
←(λ)).

Hence the proof is complete . ¤

Corollary 3.12. Let (X,N1) and (Y,N2) be (2,M)-fuzzifying
neighborhood spaces. A map f : (X,N1) → (Y,N2) is a N -fuzzifying
map iff f : (X, τN1) → (Y, τN2) is fuzzifying continuous.

From Theorems 3.9 and 3.11 we obtain the following corollaries.

Corollary 3.13. Let (X, T1) and (Y, T2) be (L,M)-topological
spaces. A mapping φ : (X, T1) → (Y, T2) is LF -continuous if and only
if φ : (X,QT1) → (Y,QT2) is an LN -map.

Corollary 3.14. Let (X, τ1) and (Y, τ2) be (2,M)-fuzzifying topo-
logical spaces. A map f : (X, τ1) → (Y, τ2) is fuzzifying continuous iff
f : (X,Nτ1) → (Y,Nτ2) is an N -fuzzifying map.
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