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(L, M)-NEIGHBORHOOD SPACES
Y.C. Kiv*, A. RAMADAN AND M.A. USAMA

ABSTRACT. We introduce the notions of (L, M)-neighborhood spaces
and (2, M)-fuzzifying neighborhood spaces. We investigate the rela-
tions among (L, M)-neighborhood spaces, (L, M )-topological spaces
and (2, M)-fuzzifying neighborhood spaces.

1. Introduction and preliminaries

Hohle [8-11] introduced the notions of L-fuzzy topology and L-filters
on a completely quasi-monoidal lattice (including GL-monoid) L in-
stead of a completely distributive lattice or a unit interval as the exten-
sions of fuzzy topologies [3,16,18] and fuzzy filters [1,2,4-7]. Kotzé[14]
introduced an (L, M )-topological space as a general approach where L
and M are frames with 0 and 1. Kim et al.[12] introduced notions of
(L, M)-topological spaces as an extension of that of Kotzé [11]. Here,
L is a completely distributive lattice with 0 and 1 and M is a strictly
two-sided, commutative quantale as an extension of a frame.

In this paper, we introduce notions of (L, M )-neighborhood spaces
and (2, M)-fuzzifying neighborhood spaces with respect to Kim [12] as
an extension of Demirci [4]. We investigate the relations among (L, M )-
neighborhood spaces, (L, M)-topological spaces and (2, M )-fuzzifying
neighborhood spaces.

In this paper, let X be a nonempty set and L = (L, <,V,A,)) a
completely distributive lattice with the least element 0 and the greatest
element 1 in L with an order reversing involution /. The family LX
denotes the set of all fuzzy subsets of a given set X. For each a € L,
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let @ denote the constant fuzzy sets of X. We denote the characteristic
function of a subset A of X by 14. A fuzzy point x; for t € L(t # 0)
is an element of LX such that

t, if y ==,
2 (y) ={

0, if y # «x.

The set of all fuzzy points in X is denoted by Pt(X). We say that
e g Nif oy LN If 2, < N, we denote x; ¢ .

Let M = (M, <,V,A, L, T) be a completely distributive lattice with
the least element L and the greatest element T in M.

DEFINITION 1.1 ([8-11,17]). A triple (M, <,®) is called a strictly
two-sided, commutative quantale (stsc-quantale, for short) iff it satisfies
the following properties:

(M1) (M,®) is a commutative semigroup,

(M2) a=a® T, for each a € M,

(M3) ® is distributive over arbitrary joins, i.e.,

(\ @) ©b=\/(a; ®b).

iel iel

REMARK 1.2. [8-11,13,17](1) Each frame is a stsc-quantale. In par-
ticular, the unit interval ([0, 1], <, A,0,1) is a stsc-quantale .

(2) Every left continuous t-norm ¢ on ([0, 1], <,t¢) with ® =t is a
stsc-quantale.

(3) Every GL-monoid is a stsc-quantale.

DEFINITION 1.3 ([12,14]). Amap 7 : L* — M is called an (L, M)-
topology on X if it satisfies the following conditions:

(LO1) T(0)=7(1) =T,

(LO2) T (1 A pz) > T (1) © T (p2), for all pun, pp € LY,

(LO3) T(Vien #i) 2 Niea T (1i), for any {pi}iea C LX.
The pair (X, 7) is called an (L, M)-topological space.

Let (X,7;7) and (Y,72) be (L, M)-topological spaces. A map ¢ :
(X,77) — (Y, 73) is called LF-continuous iff To(X) < T1(¢p (X)), for
all A € LY.
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REMARK 1.4 ([12]). Let L = {0,1} be given and 2% = P(X) in
asense 14 € 2X iff A € P(X). A map 7: P(X) — M is called a
(2, M)-fuzzifying topology on X if it satisfies the following conditions:

(01) 7(X) =7(0) =T,

(02) T(ANB) > 7(A) ©7(B),for all A,B € P(X),

(03) 7(Uien Ai) = N\jep 7(Ag), for any {A;}ien C P(X).

The pair (X, 7) is called a (2, M)-fuzzifying topological space.

Let (X,71) and (Y, 72) be (2, M)-fuzzifying topological spaces. A
map ¢ : (X,71) — (Y, 7o) is called fuzzifying continuous iff m5(A) <
1(¢p71(A)), VA € P(Y).

2. (L, M)-filter spaces

DEFINITION 2.1. A map F : LX — M is called an (L, M)-filter on
X if it satisfies the following conditions:

(LF1) F(0) = L and F(1) =T.

(LF2) F(AAp) > F(\) © F(u) for all A, u € L.

(LF3) If A < p, then F(X\) < F(u) for all A, u € LX.
The pair (X, F) is called an (L, M )-filter space. Let (X, F1) and (Y, F2)
be (L, M)-filter spaces. A map ¢ : (X, F1) — (Y, F3) is called a filter
map iff Fo(u) < Fi(¢— (), for all p € LY.

REMARK 2.2. In the sense in Remark 1.4, a map F : P(X) — M is
called a (2, M )-fuzzifying filter on X if it satisfies the following condi-
tions:

(F1) F(X) =T and F(0) = L,

(F2) F(ANB) > F(A) ® F(B), for all A,B € P(X),

(F3) If A C B, then F(A) C F(B) for any A, B € P(X).

The pair (X, F') is called an (2, M)-fuzzifying filter spaces. Let (X, F})
and (Y, Fy) be (2, M)-fuzzifying filter spaces. A map ¢ : (X, F}) —
(Y, ) is called a fuzzifying filter map iff Fo(A) < F1(¢~1(A)), for all
AePY).

REMARK 2.3. (1) If L = ([0,1],A) and M = {0,1}, (L, M)-filter
space is the concept of Chang [3].

(2) If L ={0,1} and M = ([0,1],® = A), (L, M)-filter space is the
concept of generalised filter [1,2].
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(3) If L and M are frames with 0 and 1, (L, M)-filter space is the
concept of Géhler [5,6].

THEOREM 2.4. Let (X,F) be an (L, M)-filter space. We define a
function Tr : LX — M as follows:

F(N), ifA#0,

Tr(N) = _

#() { T if A = 0.
Then (X, 7x) is an (L, M)-topological space.

Proof. We only show the condition (LO3). For \; € L%, since
Aj Ve Aj forall j € J, we have F(A;) < F(V;c;A)), so

N T=(\) < T=(\/ X)),

JjEJ jeJ
O

THEOREM 2.5. Let (X, F) be a (2, M)-fuzzifying filter space. We
define a function Fr : LX — M as follows:

= A\ F(A

relL

where A\, = {x € X : \N(z) > r} forr € L —{0}. Then Fr is an
(L, M)-filter.

Proof. (LF1) Clear.
(LF2) For each A\, € LX, we have

Fr(AAp) = /\F()\/\u ) /\F r 0 )

relL relL
>/\( @FW))_/\F(,\T)@/\F
relL relL relL

= Fr(A) © Fr(p).
(LF3) If A < u, then A\, C p,. Thus

Fr(\) = N\ FOw) < N\ Flur) = Fr(p)

relL relL
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LEMMA 2.5. Let A€ P(X) and a € L —{0}. Then Fp(a-14) =
F(A).

THEOREM 2.6. Let (X, Fy), (Y, F») be (2, M)-fuzzifying filter spaces.
A map ¢: (X, Fy) — (Y, Fy) is a fuzzifying filter map iff ¢ : (X, Fp,) —
(Y, Fr,) is a filter map.

Proof. For each € LY, we have

fF1 /\Fl )7”)2 /\FQ(MT):fFQ(M)'

relL relL

Conversely, suppose there exists A € P(X) such that Fy(¢~1(A)) %
F5(A). It implies Fr, (1y-1(a)) = Fi(¢7H(A)) 2 Fo(A) = Fr,(14). O

EXAMPLE 2.7. Let X = {z,y,2z} be a set . Define a binary op-
eration ® on M = [0,1] by  ® y = max{0,z +y — 1}. Then M =
([0,1],<,®) is a stsc-quantale. Define a (2, M)-fuzzifying topology
F:P(X)—[0,1] as follows:

(1 ifA=X

0.8, if A={x,y},
F(A)=1{ 0.6, ifA={y},
0.7, if B={y,z},

\ 0, otherwise.

For \, u € [0,1]% with
AMz) =03,\y) =0.7,\(2) = 0.5, p(x)=0.7, u(y) = 0.2, u(z) = 0.5,
we have

(Mr € Hyh Ay, 25 X () € o}, {2, 2}, X}

Hence Fr(A) = 0.6 and Fp(u) = 0.
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3. (L, M)-neighborhood spaces.

DEFINITION 3.1. An (L, M)-neighborhood system on X is a set Q =
{Q,, | z: € Pi(X)} of maps Qg, : L — M such that for each X, €
LX we have

(LN1) Q,, is an (L, M)-filter on X.

(LN2) 9, (A) > L implies x4gA.

(
(LN3) Que(N) = Vi (Aya Qe (1))
The pair (X, Q) is called an (L, M)-neighborhood space.

Let (X, 9Q;) and (Y, Q2) be (L, M)-neighborhood spaces. A func-
tion ¢ : (X, Q1) — (Y, Q2) is called an LN-map if (Q1)s, (¢ () >
(Q2)p—(xe)(A) for all A € LY and for all z; € Pt(X).

REMARK 3.2. By the sense of Remark 2.2, since x1 ¢ 14 iff z € A,
a map N, : P(X) — M is called a (2, M)-fuzzifying neighborhood of
x € X if it satisfies the following conditions:

(N1) NV, is a (2, M)-filter on X.

(N2) NV,(A) > 1| implies x € A.

(N3)Nw(A) = \/:CGBCA(/\yeBNy(B))'

Aset N ={N_ |z e X} is called a (2, M)-fuzzifying neighborhood
system on X. A map f : (X,N7) — (Y, N2) is called a N-fuzzifying
map if for each A € P(Y) and for each z € X, (Ny).(f~1(4))) >

(V2) f(2) (A).

THEOREM 3.3. Let (X,7T) be an (L, M )-topological space and x; €
Pt(X). Define a map Q% : L* — M as:

VAT (1) | 2o qu < A} if @ g A,

T _
() = { 0 if 24 A

Then (1) Q7 = {QmTt | 2, € Pt(X)} is an (L, M )-neighborhood system
on X,
(2) ift < s fort,s € L, then QF (X) < Q7 (N).

Proof. (1) (LF1) and (LF3) are easily proved.
(LF2) Suppose there exist A\, u € L* such that

Q7 (N Ap) 2 Q7 (N © QF, (n)-
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By the definition of Q7 (\) and (M3) of Definition 1.1, there exists
A1 € LY with z; ¢ A1 < X such that

Q7 (A Ap) 2 T(M)© QF, (1)

Again, by the definition of Q7 (u) and (M3) of Definition 1.1, there
exists p1 € L with x; q 1 < p such that

QF, (AA ) 2 T(M) OT ().
Since z; ¢ (A1 A p1) < A A p, we have
QT AAE) > T\ Apm) =T (M) OT ().
It is a contradiction. Hence
QI MAp) > 0L (N ool (n), Yaue L
So, Q,, is an (L, M )-filter on X.

(LN2) It is easy from the definition of Q7 .
(LN3) For all A € LX with x.qu < ), we have

T(p) < N1QL (1) [ ys q 1} < QF (1) < QL (V).

Therefore,

ot =V Tw=< V (A QL) =<l

Tequ<A Tequ<A  Ys qQ [

This means that Q7,(\) =V, . - ( e (u)).
(2) For t < s with t,s € L and VA € LX | since

(el |zqgu< A c{pe L™ |z, qp <A},

we have Q7 (\) < Q7 (N). O
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EXAMPLE 3.4. Let X = {z,y} be aset and L = M = [0,1] a
completely distributive lattice. Define a binary operation ® on M =

[0,1] by z®y = max{0,z+y—1}. Then ([0, 1], <, ®) is a stsc-quantale.
Let p, p € [0,1]% be defined as follows:

pu(x) = 0.6, u(y) =0.3 p(x) =0.5, p(y) =0.7.

We define an (L, M)-topology 7 : [0,1]% — [0, 1] as follows:

(1, ifA\=1,0
0.8, if A=upu,
0.3, if A =p,
T(\) = L
0.7, ifA=pVp,
0.2, ifA=puAnp,
L 0, otherwise.
We obtain Q7 _, Q7 :[0,1]¥ — [0,1] as:

Zo0.57 =Yo.8 °

(1 if =1,
1 if A\ =1, 0.8 ifu<N#1,
QI (N)=1 08 ifp<A#T,Q] (N)=< 03 ifp< ¥y,
0 otherwise. 0.2 ifpAu<XI?p,
L 0 otherwise.

From Theorem 3.3, we can obtain the following corollary.

COROLLARY 3.5. Let (X, 7) be a (2, M)-fuzzifying topological space.
We define a function (N;), : P(X) — M by

Noald) =\ 7(B).

r€EBCA

Then (N-), is a (2, M)-fuzzifying neighborhood of x € X.
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THEOREM 3.6. Let Q@ = {Q,, : LX — M | z; € Pt(X)} be a family
of Q,, satisfying (LN1) and (LN2) of Definition 3.1. We define a map
T2 :LX — M as follows:

AQ,, () [z g A} ifAF#D

Q _
4 ()\)_{T ifA=0.

Then we have the following properties.
(1) T2 is an (L, M)-topology on X.
(2) If @ ={Q,, |z € Pt(X)} is an (L, M)-neighborhood system

on X, then QZtQ = Q,,, for all x; € Pt(X).
(3) If Q1 and Qs are (L, M )-neighborhood systems on X such that
TQl = TQQ, then Q1 = QQ.

Proof. (1) (LO1) is trivial.
(LO2) For A\, i € L%, we have

TN p)

= A{Qa, (A A 1) | mg(A A )}

> A {Qa,(N) © Qu, (1) | e q (A A )}
> (A1Qu ) [ ma A }) © ( ALQu (1) |20 a (A A )})
> (MQe) [2aA}) © (A {Qe () |21 g 1})

=T.°(N) © T.2(n).

(LO3) Suppose TQ(\/jGJ,uj) ? /\jGJ’TQ(,uj). Then there exists a
family {u; | 2:q(V e p;)} such that

Qe (\ 13) 2 N\ Q. (1)

jeJ jeJ

Since xtq(\/je] L), there exists j € J such that z.qu; such that

Q. (\/ 1) # Qu, (1)

JjedJ
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It is a contradiction for a filter Q,,. Hence the result holds.

(2)
QT () = VAT | wequ < A}

—\/{/\{st |Z/squ}|xtqu<)\}

= Qa,(A) (by (LN 3)).

(3) Since 79 =T for A € LX and z; € Pt(X), we have

(Q1)a, (A \/{/\{ Q1)y, (1 ‘ysQlL}|ﬂ3tQM<>\}
=V {7Q1 ) | zegu < A}
=V {7Q2 ) lzan < A}
:\/{/\{ |ysqu}|xtQM<A}
= (Q2)x, (A).
Hence Q; = Qo. -

COROLLARY 3.7. Let N, : P(X) — M be a map satisfying (N1)
and (N2) for all x € X. We define a map 7nr : P(X) — M by

€A

Then:

(1) (X, 7n) is a (2, M)-fuzzifying topological space,

(2) if N is a (2, M)-fuzzifying neighborhood system, then (N, ), =
N.

(3) if N1 and N are (2, M)-fuzzifying neighborhood systems on X
such that Tn, = Tps,, then N7 = Ns.

The following lemma is easily proved.

LEMMA 3.8. Ifx;q), then there exists ji,, € L™ such that xiqp,, <
A Thus A=\, .\ Ha, -
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THEOREM 3.9. Let (X,T) be an (L, M)-topological space and Q7
an (L, M)-neighborhood system in (X, 7). Then T = 79"

Proof. Since QZ (A) = \V{T (1) | 2 g p < X} > T(N) for all 7, g A,
we have A {QZ (\) |z, ¢ A} = T(X). So, 79 >7T.

Conversely, there exists A € L¥ such that T QT()\) £ T ()). For each
xy € P(X) with x; ¢ A, if 4 ¢ p, < A, then by Lemma 3.8, we get
A=V, ¢ Ha,- So,

Thus, A7 (uz,) 7 ’TQT()\) = N{QZ (N) | zx ¢ A}. There exists g,
with x:qu,, < A such that

T(pa,) 2 NLQL (V) [ 2 g A}
It is a contradiction. Thus, 7 > T, O

COROLLARY 3.10. Let (X, 7) be a (2, M )-fuzzifying topological space
and N, a (2, M)-fuzzifying neighborhood system in (X,7). Then
T =1TnN,.

THEOREM 3.11. Let (X, Q1), (Y, Q2) be (L, M)-neighborhood spaces.
A mapping ¢ : (X, Q1) — (Y, Q) is an LN-map iff ¢ : (X, T<) —
(Y, T<2) is LF-continuous.

Proof. Since VA € LY Va, € P(X),x:q9— (\) if and only if (¢~ (z4) =
o(x)¢)gA and

{ye € PLY) | yegA} D {o(x) € PLY) | 34 € PHX), ¢(x)ig)},
we have
792<A>:/\{<Q> () Ty g A}
< A(Q2)s (N | 67 (21) g A}
< A(Q1)e (0= (N) | g 6~ (W)}
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Thus, ¢ : (X,72) — (Y,7<2) is LF-continuous.
Conversely, since VA € LY, 792(\) < T2 (¢~ ())), Q1 = 07" an
Qy = QTQQ, we have

(Q2)p— (2) (A \/ {T2 () | 67 (ze) g < A}
<\/{TQ2 \x q ¢~ (1) < 9o~ (N)}

< VAT (6™ (W) |2 g ¢ (1) < ¢~ (N}
< (Q1)a, (97 (W)

Hence the proof is complete . O

COROLLARY 3.12. Let (X,N7) and (Y,N3) be (2, M)-fuzzifying
neighborhood spaces. A map f: (X,N7) — (Y,N2) is a N-fuzzifying
map iff f:(X,7n,) — (Y, 7n,) is fuzzifying continuous.

From Theorems 3.9 and 3.11 we obtain the following corollaries.

COROLLARY 3.13. Let (X,7;) and (Y,73) be (L, M)-topological
spaces. A mapping ¢ : (X,71) — (Y,73) is LF-continuous if and only
if p: (X,97) — (Y, Q%) is an LN-map.

COROLLARY 3.14. Let (X, 1) and (Y, 12) be (2, M )-fuzzifying topo-
logical spaces. A map f: (X, 1) — (Y, 72) is fuzzifying continuous iff
[ (X,N;,) — (Y,N,,) is an N-fuzzifying map.
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