St2AlE0lMES =2X|
T Vol. 16, No. 4, pp. 77-86 (2007. 12) _

WORKGLOW: A P2P-based Web Service Orchestration
Supporting Complex Workflow Patterns

Tran, Doan Thanh' - Hoang, Nam Hai' - Eunmi Choi'’

rie

sh= P2P 7|4t #) MU]A QAAEHOIM
. Zopt3lo] - &Len)

B Y3222 HHES X|

R Qe

=3

Web services are considered as the critical component in the business plans of corporations as they offers the
potential for creating highly dynamic and versatile distributed applications that span across business boundaries. Web
Service Orchestration studies composition of already-existing web services to create new value-added services. The
composite web services could be executed in a centralized or peer-to-peer(P2P) orchestration model. Compared with
centralized-orchestration model, the P2P-based orchestration model provides better scalability, reliability, and
performance for the overall services. However, recent P2P-orchestration solutions have limitation in supporting
complex workflow patterns. Therefore, they could not effectively handle sophisticated business workflow, which
contains complex workflow patterns. In this paper, we propose the WORKGLOW system, which can deal with
complex workflow patterns while it is able to perform composite services in P2P orchestration manner. Comparing
with centralized orchestration systems, the WORKGLOW brings up more business logic advantages, better
performance, and higher flexibility with only a little overhead.

Key words : Web Service Orchestration, Workflow, Complex workflow patterns

2 %

g AuiaE B2 Bofo) FAE 7HEA 2 vl FAolR thHAl Ak ofEeAlold B9 ThsdE Alwst
o, A 7199 ot w2y A AZela Fagt s negch g Auls eAAE AL N2 R4
AUAE PAgeb] 98 oju] EAEH: @ Aulacte) B APtk BEHY 9 Mrlhe $94 ITFoIH P2P
oA 2B melox ARE 4= ek FU AFY oA|lAEH 0| o] H]ste, P2P7|RF 0 ALEF 0 M-S
AA Aulag 98] o 2 B, AlEld, A APtk T 22 PP eAAER ol SRS B3 93E
22 fHg A Ysprlols FAE shict ang Bagh YA ER0 S /s g H2yL I EReA
L aaoz ool 4 gk a7t QA Bk & RN, P2P oA 2EF ol HEE o]83to] HRE AMuls
32 71531 slo] B YA B2 dield thF WORKGLOW AlARRE ARMgch 594 A5d 2ALEH 4
A 2ET} v 5ted, WORKGLOW AlAELS HRUA 220f o]4E 7hATH 21, o7kl oW =rke Zetss, g4
" A% o w2 fA8E ARk

Faol : g Aula LAAEdClY, AABRS, B YaF2S dH

1. Introduction

* o] QA7 FRTShL ATA) A3 BK2L A9 A7)

20079 128 39 A== 20079 129 159 el Today’s business is constructed from many business
L8 = s fu = -

D o oyshaE B Z U AITEHL workflow processes. These business processes are chains
% A Zb: Tran, Doan Thanh of activities that are involved in delivering products or
WA AR} Eunmi Choi(#]-2-1}) . L . .
E-mail; emchoi@kookmin.ac.kr services. The activities chains may span across organi-

Hi6d ®Mas 20074 128

i Tran, Doan Thanh * Hoang, Nam Hai - Eunmi Choi

zations resided all over the world. As the consequence
of the mature of information technology industry, people
are finding solutions that help enterprise automate these
business processes not only within an enterprise scope
but also across enterprises. In this situation, Web
Service Composition technology appears as a pro-
mising solution. One topic of Web Service Compo-
sition research field is Web Service Orchestration,
which focuses on business process creation based on
orchestration. Orchestration always represents control
from one party’s perspective. The Orchestration term
refers to an executable business process that can
interact with both internal and external web services.
The interactions, which include business logics and
task execution orders, occur at the message level. They
may span across applications and organizations to
define a long-lived, transactional, and multi-step process
model. There are two approaches to execute composite
web services: centralized orchestration and P2P-based
orchestration (P2P-orchestration). Currently, most of
the commercial workflow management systems such as
MQSeries, SAP R/3, Staffware, and MS Biztalk, use
the centralized orchestration model. Compared with the
P2P-based orchestration model, the centralized model is
popular because it is easier to manage and develop,
despite of the fact that the distributed orchestration
style brings more benefits on scalability, fault tolerance,
security, and the distribution of workload. Former
research works of P2P-based orchestration have been
studied. However, the prior proposed P2P solutions
expose the lack of supporting for three groups of
complex workflow patterns: (1) advanced branching
and synchronization patterns; (2) multiple instances
patterns; (3) cancellation patterns. In this paper, we
propose a workflow execution that supports these three
complex patterns. We also experiment this workflow in
heterogeneous use-cases to verify the practical usage of
our solution.

This paper is organized as follows: Section 2 reviews
some concepts of workflow patterns and P2P-
orchestration. Section 3 describes the WORKGLOW,
the proposed workflow execution system that is capable
of executes complex workflow patterns via the P2P-

St=AIEE|0|3etE| =2 X

orchestration style. Section 4 presents the analysis on
performance evaluation of the proposed solution. Con-
clusion is discussed in Section 5.

2. Related Work

This section reviews some concepts of workflow
patterns and P2P-orchestration by showing two parts:
the first part is about workflow pattern categorization;
the second part is about SELF-SERV, which is the
pioneer research project to execute composite Web
Service in a P2P-orchestration manner.

2.1 Categorization of Workflow Patterns
According to the research work of W.M.P. van der

Aalst®**® workflow patterns address business require-
ments in an imperative workflow style expression
regardless of specific workflow languages. There are
20 commonly used workflow patterns, which can be
categorized into six groups as shown in Figure 1. In
these six categories, there are three pattern categories
that are usually not supported by P2P-orchestration
sys-tem: (1) Advanced branching and synchronization
patterns; (2) Patterns involving multiple instances; and
(3) Patterns involving multiple instances.

Advanced branching and synchronization patterns:
These patterns transcend the basic patterns to allow
more advanced types of splitting and joining behavior.
An example is the Synchronizing merge (Pattern 7),
which behaves like an AND-join or XOR~join depending

Bcsbc Control Flow Fatterns
Pattern | {Saquence)

< Pattern 2 (Paraliel Spli)

« Patten 3 (Synchwomzatorn)

+ Paltern 4 {Exclusive Chaice)

¢ Paltern § (Simple Merge)

Advanced Branching and
Synchronization Patterns

» Pattern 8 (dtulli -choice)

= Pattern 7 (Synchronizing Mengs)

+ Pattem B (Ml -merga)

+ Pattemn B (Dsoimineior)

Structural Palterns
= Pattem 10 {Arbitrary Cycles)
+ Pattam 11 {Imphct Terminaton)

Cancsllation Patterns
+ Pattern 19 (Cancel Activity)
+__ Pattem 20 (Cancel Case)

Patterns involving Muitiple Instances
Pauem 12 (Mult:ple Instances Without

i sme-baaed Patterns + Paltern 13 {Mulliple Instances With a Priori

: Pattern 18 [Deferrad Design Time Knowtedga)

v Choice) « Pattem 14 {Mu'tpie Instances With a Pron

1« Pattem 17 {interieaved Runtime Knowledge)

| Parsliel Routing) « Pattam 15 (Multple Inslances Withou? a Priori
|+ Pattamn 18 (i Runtima Knowiadge)

Fig. 1. Twenty most commonly used workflow patterns
categorized in six groups

WORKGLOW: A P2P-based Web Service Orchestration Supporting Complex Workflow Patterns I

on the context.

Patterns involving multiple instances: Within the
context of a single case (i.e., workflow instance) some-
times parts of the process need to be instantiated
multiple times. For example, within the context of an
insurance claim, multiple witness statements need to be
processed.

Cancellation patterns: The occurrence of an event
(e.g., a customer canceling an order) may lead to can-
cellation of activities. In some scenarios, events may even
cause a withdrawing process of the whole rest of cases.

2,2 P2P—-Orchestration Mechanism
The SELF-SERV"*" is the pioneer framework for

dynamic and peer-to-peer provisioning of web ser-
vices. In SELF-SERV system, composite services are
executed in a P2P-style, which is coordinated by
several peer software components called coordinators.
Coordinators are attached to every task of a composite
service and they are in charge of initiating, controlling,
monitoring the associated tasks, and collaborating with
their peers to manage service execution.

Knowledge required at runtime by each coordinator
involving in a composite service (e.g., location, peers,
and control flow routing policies) is statically extracted
from a service operation’s state chart at design time.
After that, the knowledge is stored in a simple tabular
form, called routing tables. Routing tables contains
preconditions and post-processing information. Precon-
ditions information is used to figure out when a service
should be executed. Post-processing information is used
to determine what should be done after service exe-
cution. Routing tables, which contain preconditions and
post-processing data, are the heart of SELF-SERV
system. Calculating routing tables does not require
severe time consuming and is not too difficult to
handle. However, preconditions and post processing
information contained in routing tables is not enough
for SELF-SERV to deal with three categories of com-
plex workflow patterns: (1) advanced branching and
synchronization patterns; (2) patterns involving multiple
instances; (3) cancellation patterns.

This limitation results in the low flexibility in work-

flow design. For instance, let us consider a Travel
Planning composite Web Service. In this service, the
task Pay will be invoked when all the three booking
services (FlightBooking, HotelBooking, and CarRental)
return positive resulting values. When the Flight-
Booking Web Service returns negative values (it means
that there is no available flight ticket), the execution of
CarRental and HotelBooking web services need to be
canceled as soon as possible. The travelers want to pay
only for the full plan; it wastes money and is mean-
ingless if they spend money on hotel booking without
reserving the flight ticket for traveling. This is a com-
mon scenario that usually met in the business world.
Unfortunately, SELF-SERV does not provide a direct
way to cancel a part of the workflow at runtime as in
this example.

The YAWL (Yet Another Workflow Languagc)m is
the first solution that fully implements all prior-
mentioned 20 common workflow patterns in a formal
way., At first, the YAWL was developed by taking
Petri nets as a starting point and adding mechanisms to
allow more direct and intuitive supports of the work-

SELF SERV Task Coordinator

YAWL.? AtomicTask

Fig. 2. Task-coordinator structure of SELF-SERV solution
and YAWL solution

HMi6H M4z 20073 128

Tran, Doan Thanh - Hoang, Nam Hai - Eunmi Choi

i

flow patterns identified. While most of the popular
workflow languages support only 10 to 14 out of 20
most-popular identified workflow patterns, YAWL
directly supports the full range, 20 patterns.

After all, YAWL is not designed to execute the
composite web service in the P2P-orchestration style.
Therefore, like others contemporary workflow system,
YAWL system uses the centralized orchestration model
which is easier to manage but has lower expansibility
and higher workload at the orchestration point when
compared with P2P-orchestration approach.

3. The WORKGLOW Solution

In this section, we present the WORKGLOW, which
is a system that can deal with complex workflow pat-
terns while it is able to perform composite services in
a P2P orchestration manner. The WORKGLOW is built
by synthesizing task’s structure of SELF-SERV and
YAWL system together. Besides, we work on addi-
tional mechanism to control execution of a workflow
task in the distributed environment at runtime.

This powerful feature of YAWL comes from the
innovation in task structure design and the Reset nets
theory[S]. Figure 2 represents the structural differences
between SELF-SERV’s task coordinator and YAWL'’s
atomic task. Compare with the SELF-SERV’s, YAWL’s
atomic task is more complex; it has one “add tran-
sition” and three arrays more (mi_at, mi_et, and mi_ct),
which are responsible for keeping information of all
job instances. Descriptions of these arrays are listed in
Table 1.

Table 1. Workload characteristics of application requests

SELF-SERV Task

. YAWL’s atomic task
Coordinator

exect: keep track of the task is being
executed

mi_at: keep track of job instances
already created

mi_et: keep track of job instances
that are waiting for execution

exect: keep track of
the task is being
executed

mi_ct: keep track of job instances
already completed

€D 5t=2ASe0|8EE =2X|

By inheriting this structure, the WORKGLOW task
coordinator can perform multi-instance workflow pat-
terns. However, because of the differences between
centralized execution and P2P execution environments,
WORKGLOW cannot inherit the ability to disable a
part of workflow at runtime from YAWL. The pro-
posed mechanism to disable a part of the workflow at
runtime of WORKGLOW is described as follows:

1. While executing:

= Receiving control flow notifications from other
task coordinators. There could be two types of
notification message:
= task complete
= task cancel

= Whenever there is a job in the mi_et waiting list,
the transition start will be enabled. When this
transition fires, it consumes a token from mi_et
and produces a token for exect.

= Transition complete occurs when the execution is
completed. When this transition fires, it consumes
a token from mi et and produces a token for
mi_ct.

= Transition exit occurs when all instances cor-
responding to the same parent have completed.
The task coordinator also removes tokens from
selected parts of the specification as indicated in
its removing list. The number of tokens produced
depends on the number of connections and the
behavior of the split output specified in the work-
flow specification.

2. When “task complete” notification is received:

» Check with information from the workflow speci-
fication to determine whether it is time to execute
the currently waiting task or not

= If it is time to execute the task, task coordinator
will create a job instance and put it in mi at and

mi_et

3. When “task cancel” notification is received:
= Stop the current execution task
= Remove all the tokens from the input place

WORKGLOW: A P2P-based Web Service Orchestration Supporting Complex Workilow Patterns I

» Propagate the “task cancel” notification to children

task coordinators which are executing

Aimed with the new added components variable
inside and the new set of executing task-coordinator,
the orchestration system now can execute all 20 com-
monly-used workflow pattern of six categories identi-
fied in Figure 1. As mentioned earlier, in P2P orche-
stration system, besides the executing the composed
web service mission, the task coordinator need to handle
the entire job that the central workflow engine in the
centralized model usually do. This means in the real
system, we need to add more components and func-
tions for the task-coordinator. Implementation detail of
the task-coordinator is coming next.

Figure 3 depicts the components inside the task-
coordinator of the proposed orchestration system. For
easy to refer, we call the proposed system as WORK-
GLOW. The coordinator has new components com-
pares with the structure described in Figure 2. These
new added components will make the task coordinator
work with other application tools (such as: workflow
definition tools, monitoring and administration tools,
ete, showed in figure 3 as number one to five).

With this addition cancellation part for YAWL
mechanism to execute composite web service based on
P2P-orchestration, we have a complete WORKGLOW
system that can support 20 commonly used patterns on
P2P-ochestration based execution.

Enguauetans | | WD service

atk-Coordinalor ore

Wokiist-
| Handier

Fig. 3. Implementation structure of Task Coordinator

4, System Evaluations

This section presents the performance assessment of
the WORKGLOW solution described in Section 3. In
order to perform the experiments, we setup a prototype
of the WORKGLOW system and use a business scenario
called Complete Travel Service (CTS). There are two
workflows that fulfill all the business requirements that
CTS expected. The CTS version 1 uses pure basic
workflow patterns, and it is very similar to the version
2 except for one difference.
As illustrated in Figure 4, the only difference between
those two workflows is that version 2 workflow con-
tains a cancellation pattern while the other does not.
The semantic description of CTS is described as follows:
» The CTS is built based on 9 tasks: Register,
FlightBooking, HotelBooking, CarRental, Travel-
Insurance, SpecialEquipmentService, AirportPickup,
PaymentService, and Cancel.

* To use CTS, at first, travelers have to register
their personal information by using Register service.
The information should include name, address,
phone number and credit card information, etc.

* There are three vital things to a travel plan: (1)

the Flight ticket, (2) the Hotel Reservation con-
firmation, and (3) the Car Rental confirmation. If
one or more of these things could not be arranged,
the whole plan should be canceled.

Fig. 4. Two versions of the CTS’s workflow

A6 M4z 2007 128 @D

2 Tran, Doan Thanh - Hoang, Nam Hai - Eunmi Choi

» The Travellnsurance agreement, AirportPickup ser-
vice, and the confirmation of Special Equipment
Service should be considered. However, these things
are not critical; they are just options of preference
in a travel plan.

= The PaymentService task is called on demand. Only
three tasks inside the CTS workflow could invoke
the Payment service: (1) AirportPickup, (2) Special-
EquipmentService, and (3) CarRental tasks.

= The task Cancel should be executed at the mo-
ment the first booking task fails and it withdraws
executing items in the remaining booking tasks.

= Canceling a booking that has completed success-
fully need to be compensated. For more specific,
let us suppose that the penalty fee of canceling
each booking service is 10%.

4.1 Experimental results of using complex
workflow patterns
Because the only difference between two versions of

CTS workflows is that one workflow contains a can-
cellation workflow pattern while the other does not.
Therefore, by running these two workflows in the same
hardware environment and configuration conditions, we
can measure the effect of the cancellation mechanism
used in the WORKGLOW on the overall performance
of the system.

In order to conduct the performance test, we run the
CTS version | and CTS version 2 workflows 100 times
and measure log information of processing time, com-
munication time, waiting time and message exchanged.
In every test case:

= The processing time of each task is assigned

randomly in the range of 650 to 750 milliseconds.
= All web services involved in the workflows are
installed on 3 machines.

= All the branching conditions are set randomly.

The average processing time and the average number
of messages exchanged when executing the CTS work-
flows using P2P orchestration style are summarized in
Figure 5. As plotted in the figure, when executing the
CTS without any complex workflow patterns (i.e., CTS
version 1), the average number of messages used per

€D G=AE0|MEE =2X]|

Number of messages (msg)
Time {millisecond)

‘Average message per workfiow ‘Avarage running tme per

warktlowcase

@ C TS without 851 DCTS without 9397
Cancetation Cancelation
pattem pattem

mCTS Wit es53 MCTSwith wva
Cancelation Cancetation
pattem pattern

Fig. 5. Performance comparison of the CTS workflows w/
and w/o cancellation pattern

case is 8.51 and the average processing time is 1,959
milliseconds. When running execute the CTS with
cancellation pattern (CTS version 2) in the same cond-
itions, the average number of messages and average
processing time per workflow cases are 12.53 and
1,717, tespectively. As described before, the only dif-
ference between these two workflows is that one
version contains a cancellation pattern while the other
does not. The CTS workflow with cancellation pattern
achieves about 14% better performance although it uses
about 47% more message than the CTS without can-
cellation pattern. When executing the CTS workflow
with cancellation pattern, if every time the Cancel task
is invoked, it spreads out cancellation notifications to
other peers which were listed in its removing list.
Because the cancellation message is so small that it
makes just a little computing overhead and networking
traffic. In addition to this kind of direct cancellation,
there are many cases that the task-coordinators were
informed about cancellation before calling the elementary
web services and invoking unnecessary tasks.

4.2. Experiment of homogeneous composite
web services
In this experiment we measure running time, waiting

time, communication time, and number of messages in
a homogeneous system called Inter-Library search engine.

The results are measured in two cases: With Can-
cellation pattern and without Cancellation pattern. In
this system, a number of universities’ libraries join
together and form an inter library search engine.

WORKGLOW: A P2P-based Web Service Orchestration Supporting Complex Workflow Patterns I

Through this system, a user can search a book from
different databases of all the universities. When recei-
ving a search request, the system searches in local
university’s databases and inquires to other universities
to get the results. Figure 6 illustrates the workflow
specification of this system.

The experimental environment is setup as follows:

= 100 tasks are executed simultaneously at the begin-

ning of the experiment.

* The processing time of each task is assigned

randomly in the range of 250 to 450 milliseconds.
= All web services involved in the workflows are
installed on 3 machines.

* All machines are using Microsoft Windows 2000

server, Internet Information Server version 5.0, dot
Net framework version 1.1 (Asp.net version 1.1).
* All machines use CPU Intel Pentium IV 3GHz.
* The random access memory of the machines is
512 MB RAM.
= Each machine is connected to a LAN through the
100 Mbits/sec Ethernet card.

Figure 7 shows that even in homogeneous cases,
web service execution with Cancellation pattern achieved
better performance in running time, communication
time, and waiting time, compared to web service exe-

Universty C

Fig. 6. A workflow specification for Inter-Library Search
Engine

cution without Cancellation pattern while consuming
just little overhead in number of transmitted messages.

4.3 Experimental results of performance
WORKGLOW inherits the layered architecture and

the P2P orchestration feature from SELF-SERV system.
Therefore, when compared any system that uses the
centralized orchestration style, WORKGLOW always
has more advantage in term of system scalability,
flexibility and workload distribution.

Normally, when creating a composite service, the
address and syntax of the elementary web service must
be explicitly known. Hence, the service that could be
used in composition is restricted to existing ones. By
inheriting Service Container and Membership modes
concepts from SELF-SERV, WORKGLOW is able to
select the most suitable web service to execute a task at
run time. This means the web service used to execute
a WORKGLOW?’s task could be add after the work-
flow design time and changing in the elementary web
service is separated from the workflow specification.

A Service Container is a service that aggregates
several other substitutable services - those that provide
a common capability (the same set of operations) either
directly or through an intermediary mapping. Service

=
H 1500 - _ 00000
£ < | g
a o] 80000
00
] 2 60000
a £
g =z
& E 20000
E 500 <
s 5 20000 £
& -
2 000 : © 000
E Averagemessageper | Average runringtime per
H workfow case | vorkflowcase
[mvout 923 Evithos 85950
Caneelation | Cancelation
patem P pattesn —
Witk 859 WWith M0
Cancetation i Cancelation
.. patem . - | pattem - —
- 4000 ~ 50.00
3)
H 2000 H 4000 4:
¢ 7000 g
A 8000] 3000
E 6000 E 2000 !
by 4000 5
v 3
£ 2000 E 00
£ 1 £ B
000 000
Average waiting time per
workflow case '
—) J—
B Without AWthout] 4883 !
Cancdatio Cancelation
npattem . . patem -
mwith 7870 mth f %50 ‘
Cancdatio Cancelation
. npattem - - oatem |

— - -]

Fig. 7. Performance comparison in homogeneous cases

Hi6® M4z 20073 128

Tran, Doan Thanh - Hoang, Nam Hai - Eunmi Choi

Container exists independently with the service that
they aggregate. In essence, a Service Container also is
a web service so that it can be invoked.

Take the workflow in Figure 8 as example. The
HotelBookingContainer in this scenario aggregates the
HotelBooking!, HotelBooking2, and HotelBooking3
service. The HotelBooking task has two options: (1)
invoke a specific HotelBooking service that available
or (2) invoke the HotelBookingContainer and let the
Container service take responsible for selecting the
most suitable service. HotelBookingContainer will pro-
cess this multi-attribute dynamic selection by using the
membership mode concept and a scoring service.

The purpose of this subsection’s experiment is to
compare the execution time and distribution of the P2P
orchestration model with those of the centralized one.
We measured the average processing time for a work-
flow case and the number of overall physical message
exchanged across participant tasks. We setup the experi-
mental environment to run the CTS with cancellation
pattern (CTS version 2) in two situations. In both
situations:

= The processing time of each task is assigned

randomly in the range of 650 to 750 milliseconds.

WORKGLOW Service | {WORKGLOW Service |
nftar derioyer

B B - User
I] iarer

Network
fayer

Netvosk
infagrstise s

Service
directory
faver

y
; & Sevice
: S
oy Flghmddm;?; fayer

0

CTSsen Regider

Fig. 8. WORKGLOW system architecture for executing
CTS service

€@ S=A20|M813| =X

= All web services involved in the workflows are
installed on 3 machines.

* All machines are using Microsoft Windows 2000
server Internet Information Server version 5.0, dot
Net framework version 1.1 (Asp.net version 1.1).

= All machines use CPU Intel Pentium IV 3GHz.

* The random access memory’s configurations of
the machines are different: one machine has 1GB
while the other two have 512 MB RAM.

* Each machine is connected to a LAN through the
100 Mbits/sec Ethernet card.

s All the branching conditions for all workflow tasks
are assigned randomly without considering depen-
dency.

In the situation A, the workflow is executed using
centralized orchestration style. The situation B is con-
figured to run within the same condition of the situa-
tion A except that the workflow is executed using a
P2P-orchestration style. For each of situations A and B,
we run 100 workflow cases continuously. All infor-
mation of execution time and the number of message
processed at each point of the workflow are recorded.

As the results, the bar graph in Figure 9 shows the
average processing times for a workflow case when

Average processing time per
workflow case

3000
2500
)
© 2000
:
H] 1500 4
E
£
e 1000
E
e
500 4
o :
Average processing time per
w orkflow case
@ Centralized 2496
grchestration
= P2P 1746
orchestration

Fig. 9. Performance comparison of centralized orchestration
and P2P orchestration styles.

WORKGLOW: A P2P-based Web Service Orchestration Supporting Complex Workflow Patterns I

performing the workflow using centralized orchestra-
tion style and P2P orchestration style. The average
processing times in centralized orchestration style and
P2P orchestration style are 2,496 and 1,746 milli-
seconds, respectively. With the benefit of P2P orches-
tration manner, the more computers participate in run-
ning the distributed workflow, the shorter the average

execution time is.

5. Conclusion

This paper introduces basic concepts about web
service composition. There are two ways to execute the
composite web service: centralized and P2P approaches.
Although the P2P execution approach provides more
advantages over the centralized style in terms of scala-
bility, availability, and security, current P2P execution
solutions do not support three groups of complex work-
flow patterns (1) branching and synchronization group.
(2) multiple-instance group, and (3) cancellation group.
Thus, we propose the WORKGL.OW system as a pro-
per solution for this problem, which is built by com-
bining the good ideas in system architecture design of
two related works (YAWL and SELF-SERV) and
defining a mechanism for canceling a part of the
workflow specification in a distributed environment at
runtime. As the result, the WORKGLOW system can
handle all 20 identified common workflow patterns
(including three complex pattern groups mentioned
above), while it still preserves the scalability and the
distributed execution features. The side effect of this
cancellation mechanism is that the system created little
overhead because of more notification messages gene-
rated. Nevertheless, choosing to have a clearer, more

flexible and easier to adapt workflow and trade-off a
little computation time is always a good option to
consider.

References

1. Boualem Benatallah, Marlon Dumas, Quan Z. Sheng,
Anne H. H. Ngu, “Declarative Composition and Peer-
to-Peer Provisioning of Dynamic Web Services”, Pro-
ceedings of the 18th International Conference on Data
Engineering (ICDE 02), 2002, pp. 297.

2. Marlon Dumas, Boualem Benatallah and Quan Z. Sheng,
“The Self-Serv Environment for Web Services Compo-
sition”, IEEE Internet Computing, 2003, pp. 40-48.

3. Wil van der Aalst and Kees van Hee, “Workflow Mana-
gement Models, Methods, and Systems”, MIT Press
Cambridge 2002, 2002.

4. W. M. P. van der Aalst, L. Aldred , M. Dumas, and A.
H. M. ter Hofstede, “Design and implementation of the
YAWL system”, Technical Report FIT-TR-2003-07, Centre
for IT Innovation, QUT, 2003, 142-159.

5. W. M. P. van der Aalst and A. H. M. ter Hofstede,
“YAWL: Yet Another Workflow Language (Revised
version)”

6. W. M. P. van der Aalst, A. H. M. ter Hofstede, B.
Kiepuszewski, and A. P. Barros, “Workflow Patterns”,
Distributed and Parallel Databases, 2003, pp. 5-51.

7. Boualem Benatallah, Quan Z. Sheng, Marlon Dumas
“The SELF-SERV Environment for Web Service Com-
position”, IEEE Internet Computing, 2003, pp. 40-48.

8. Moe Thandar Wynn, David Edmond, W. M. P. van der
Aalst and A. H. M. ter Hofstede, “Achieving a General,
Formal and Decidable Approach to the OR-join in
Workflow using Reset nets”, ICATPN 2005, 2005, pp-
423-443.

9. W. M. P. van der Aalst “The Application of Petri Nets
to Workflow Management”, Journal of Circuits, Systems
and Computers, 1998, pp. 21-66.

Hi6H M43 20074 122 @EED

§ Tran, Doan Thanh - Hoang, Nam Hai - Eunmi Choi

Tran, Doan Thanh (thanhtd@kookmin.ac.kr)

2002 Hochiminh National University of Science, Telecommunication and Networking, B.S.
2006 Kookmin University, School of Business 1T, M.S.
2006~Now Kookmin University, School of Business IT, Ph.D. Candidate

Areas of Interest: Grid computing, Ubiquitous Computing, Ubiquitous Sensor Network, Web Service
Orchestration

Hoang, Nam Hai (emchoi@kookmin.ac.kr)

2002 Hanoi National University of Technology, Computer Science, B.E.
2006 Kookmin University, School of Business IT, M.S.
2004~Now IT Expert, UNIDO and Ministry of Planning and Investment of Vietnam

Areas of Interest: Web Service Orchestration, Message Queueing Services, Enterprise Architecture

- szl o

#| 2 ol(Eunmi Choi) (emchoi@kookmin.ac.kr)

1988 et AFEEhe} shat

1991 Michigan State University, Computer Science, M.S.
1997 Michigan State University, Computer Science, Ph.D.
19982004 FHENSR HAHAZER 204

2004~ @A ety 8|2 AITER R

€D =Aso|MEE =2X|

