Gene Expression Profile of Lung Cancer Cells Following Photodynamic Therapy

폐암 세포주에서 광역학 치료에 의한 유전자 발현 분석

  • Sung, Ji Hyun (Department of Molecular and Cellular Biochemistry, College of Medicine, Kangwon National University) ;
  • Lee, Mi-Eun (Clinical Research Institute of Kangwon National University Hospital) ;
  • Han, Seon-Sook (Department of Internal Medicine, College of Medicine, Kangwon National University) ;
  • Lee, Seung-Joon (Department of Internal Medicine, College of Medicine, Kangwon National University) ;
  • Ha, Kwon-Soo (Department of Molecular and Cellular Biochemistry, College of Medicine, Kangwon National University) ;
  • Kim, Woo Jin (Department of Internal Medicine, College of Medicine, Kangwon National University)
  • 성지현 (강원대학교 의과대학 생화학교실) ;
  • 이미은 (강원대학교병원 임상의학연구소) ;
  • 한선숙 (강원대학교 의과대학 내과학교실) ;
  • 이승준 (강원대학교 의과대학 내과학교실) ;
  • 하권수 (강원대학교 의과대학 생화학교실) ;
  • 김우진 (강원대학교 의과대학 내과학교실)
  • Received : 2007.04.05
  • Accepted : 2007.06.07
  • Published : 2007.07.30

Abstract

Background: Photodynamic therapy is a viable option for lung cancer treatment, and many studies have shown that it is capable of inducing cell death in lung cancer cells. However, the precise mechanism of this cell death has not been fully elucidated. To investigate the early changes in cancer cell transcription, we treated A549 cells with the photosensitizer DH-I-180-3 and then we illuminated the cells. Methods: We investigated the gene expression profiles of the the A549 lung cancer cell line, using a DEG kit, following photodynamic therapy and we evaluated the cell viability by performing flow cytometry. We identified the genes that were significantly changed following photodynamic therapy by performing DNA sequencing. Results: The FACS data showed that the cell death of the lung cancer cells was mainly caused by necrosis. We found nine genes that were significantly changed and we identified eight of these genes. We evaluated the expression of two genes, 3-phosphoglycerate dehydrogenase and ribosomal protein S29. The expressed level of carbonic anhydrase XII, clusterin, MRP3s1 protein, complement 3, membrane cofactor protein and integrin beta 1 were decreased. Conclusion: Many of the gene products are membrane-associated proteins. The main mechanism of photodynamic therapy with using the photosensitizing agent DH-I-180-3 appears to be necrosis and this may be associated with the altered production of membrane proteins.

연구배경: 광역학 치료는 폐암 치료에 실질적으로 이용 가능하며, 많은 연구들에서 폐암 세포에서 세포사멸을 일으킨다는 것이 이미 알려져 있다. 그러나 이 세포사멸의 기전은 아직 정확히 알려져 있지 않으며, 이에 암세포의 전사에서 초기 변화가 어떻게 일어나는 지를 알아보기 위하여 실험을 수행하였다. 방 법: 광과민성 물질인 DH-I-180-3으로 A549 세포에 처리를 하고 광역학 치료를 한 후 관찰하였다. 광역학 치료 후 DEG kit를 이용하여 폐암 세포주에서의 유전자 발현을 보았으며, 유세포 분석기를 이용하여 세포 사멸을 측정하였다. 광역학 치료 후 의미있는 변화를 보인 유전자는 염기서열분석으로 확인하였다. 결 과: 유세포분석 결과 폐암세포주는 대부분 세포괴사에 의하여 사멸되었다.광역학 치료 후, 9개의 유전자에서 명확한 변화가 있음을 발견했으며 이 중8개의 유전자를 밝혀내었다. 3-phosphoglycerate dehydrogenase와 리보솜 단백질 S29의 유전자 발현이 증가되어 있었으며, carbonic anhydrase XII, clusterin, MRP3s1 protein, complement 3, membrane cofactor protein, ${\beta}$-1 integrin의 유전자 발현은 감소되어 있었다. 결 론: 본 연구는 광과민성 물질인 DH-I-180-3을 이용한 광역학 치료에서 폐암 세포의 세포사멸의 주된 기전이 세포괴사에 의해 이루어 진 것임을 밝혀냈으며, 이와 관련된 유전자들 대부분이 막단백의 변화를 통해 이루어짐을 알 수 있었다.

Keywords

References

  1. Spiro SG, Porter JC. Lung cancer-where are we today? Current advances in staging and nonsurgical treatment. Am J Respir Crit Care Med 2002;166:1166-96 https://doi.org/10.1164/rccm.200202-070SO
  2. Spira A, Ettinger DS. Multidisciplinary management of lung cancer. N Engl J Med 2004;350:379-92 https://doi.org/10.1056/NEJMra035536
  3. Moghissi K, Dixon K. Is bronchoscopic photodynamic therapy a therapeutic option in lung cancer? Eur Respir J 2003;22:535-41 https://doi.org/10.1183/09031936.03.00005203
  4. Dougherty TJ, Comer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. Photodynamic therapy. J Natl Cancer Inst 1998;90:889-905 https://doi.org/10.1093/jnci/90.12.889
  5. Kim CS, Lee CH, Lee PH, Han S. Inactivation of mitochondrial electron transport by photosensitization of a pheophorbide a derivative. Mol Cells 2004;17:347-52
  6. Lim DS, Ko SH, Won DH, Lee CH, Lee WY. Photodynamic anti-tumor activity of a new chlorinebased photosensitizer against Lewis lung carcinoma cells in vitro and in vivo. J Porphyrins Phthalocyanines 2003;7:155-61 https://doi.org/10.1142/S1088424603000215
  7. Kim YJ, Kwak CI, Gu YY, Hwang IT, Chun JY. Annealing control primer system for identification of differentially expressed genes on agarose gels. Biotechniques 2004;36:424-30 https://doi.org/10.2144/04363ST02
  8. Cui XS, Shin MR, Lee KA, Kim NH. Identification of differentially expressed genes in murine embryos at the blastocyst stage using annealing control primer system. Mol Reprod Dev 2005;70:278-87 https://doi.org/10.1002/mrd.20210
  9. Fabris C, Valduga G, Miotto G, Borsetto L, Jori G, Garbisa S, et al. Photosensitization with zinc (II) phthalocyanine as a switch in the decision between apoptosis and necrosis. Cancer Res 2001;61:7495-500
  10. Dellinger M. Apoptosis or necrosis following photofrin photosensitization: influence of the incubation protocol. Photochem Photobiol 1996;64:182-7 https://doi.org/10.1111/j.1751-1097.1996.tb02440.x
  11. Vermes I, Haanen C, Steffens-Nakken H, Rertelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labeled Annexin V. J Immunol Methods 1995;184:39-51 https://doi.org/10.1016/0022-1759(95)00072-I
  12. Ahn WS, Bae SM, Huh SW, Lee JM, Namkoong SE, Han SJ, et al. Necrosis-like death with plasma membrane damage against cervical cancer cells by photodynamic therapy. Int J Gynecol Cancer 2004;14:475-82 https://doi.org/10.1111/j.1048-891x.2004.14308.x
  13. Ulmasov B, Waheed A, Shah GN, Grubb JH, Sly WS, Tu C, et al. Purification and kinetic analysis of recombinant CA XII, a membrane carbonic anhydrase overexpressed in certain cancers. Proc Natl Acad Sci USA 2000;97:14212-7 https://doi.org/10.1073/pnas.97.26.14212
  14. Leppilampi M, Saarnio J, Karttunen TJ, Kivela J, Pastorekova S, Pastorek J, et al. Carbonic anhydrase isoenzymes IX and XII in gastric tumors. World J Gastroenterol 2003;9:1398-403 https://doi.org/10.3748/wjg.v9.i7.1398
  15. Supuran cr, Scozzafava A, Casini A Carbonic anhydrase inhibitors. Med Res Rev 2003;23:146-89 https://doi.org/10.1002/med.10025
  16. Torky AR, Stehfest E, Viehweger K, Taege C, Foth H Immuno-histochemical detection of MRPs in human lung cells in culture. Toxicology 2005;207:437-50 https://doi.org/10.1016/j.tox.2004.10.014
  17. Young LC, Campling BG, Cole SP, Deeley RG, Gerlach JH. Multidrug resistance proteins MRP3, MRP1, and MRF2 in lung cancer: correlation of protein levels with drug response and messenger RNA levels. Clin Cancer Res 2001;7:1798-804
  18. Oshita F, Kameda Y, Ikehara M, Tanaka G, Yamada K, Nomura I, et al. Increased expression of integrin beta 1 is poor prognostic factor in small-cell lung cancer. Anticancer Res 2002;22;1065-70
  19. Cordes N, Blaese MA, Meineke V, Van Beuningen D. Ionizing radiation induces up-regulation of functional beta1-integrin in human lung tumour cell lines in vitro. Int J Radiat Biol 2002;78:347-57 https://doi.org/10.1080/09553000110117340
  20. Park CC, Zhang H, Pallavicini M, Gray JW, Baehner F, Park CJ, et al. Betal integrin inhibitory antibody induced apoptosis of breast cancer cells, inhibits growth, and distinguished malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Res 2006;66:1526-35 https://doi.org/10.1158/0008-5472.CAN-05-3071
  21. Hakulinen J, Junnikkala S, Sorsa T, Meri S. Complement inhibitor membrane cofactor protein is constitutively shed from cancer cell membrane in vesicles and converted by a metalloproteinase to a functionally active soluble form. Eur J Immunol 2004;34:2620-9 https://doi.org/10.1002/eji.200424969
  22. Madjd Z, Durrant LG, Pinder SE, Ellis IO, Ronan J, Lewis S, et al. Do poor-prognosis breast tumours express membrane cofactor proteins (CD46)? Cancer Immunol Immunother 2005;54:149-56 https://doi.org/10.1007/s00262-004-0590-0
  23. Cecic I, Serrano K, Gyongyossy-Issa M, Korbelik M Characteristics of complement activation in mice bearing Lewis lung carcinomas treated by photodynamic therapy. Cancer Lett 2005;225:215-23 https://doi.org/10.1016/j.canlet.2004.11.059
  24. Sharman B, Seifert M, Leskov K, Willis J, Boothman D, Tilgen W, et al. Challenge and promise: roles for clusterin in pathogenesis, progression and therapy of cancer. Cell Death Differ 2006;13:12-9 https://doi.org/10.1038/sj.cdd.4401779
  25. Pajak B, Orzechowski A. Clusterin: the missing link in the calcium-dependent resistance of cancer cells to apoptogenic stimuli. Postepy Hig Med Dosw 2006;60:45-51
  26. July LV, Beraldi E, So A, Fazli L, Evans K, English JC, et al. Nucleotide-based therapies targeting clusterin chemosensitize human lung adenocarcinoma cells both in vitro and in vivo. Mol Cancer Ther 2004;3:223-32 https://doi.org/10.4161/cbt.3.2.775
  27. Cho HM, Jun DY, Bae MA, Ahn JD, Kim YH Nucleotide sequence and differential expression of the human 3-phosphoglycerate dehydrogenase gene. Gene 2000;245:193-201 https://doi.org/10.1016/S0378-1119(00)00009-3
  28. Khanna N, Reddy VG, Tuteja N, Singh N. Differential gene expression in apoptosis: identification of ribosomal protein S29 as an apoptotic inducer. Biochem Biophys Res Commun 2000;277:476-86 https://doi.org/10.1006/bbrc.2000.3688
  29. Zhou ZD, Bao L, Liu DG, Li MQ, Ge YZ, Huang YL, et al. Low content of protein S29 in ribosomes of human lung cancer cell line a549: detected by twodimensional electrophoresis. Protein Pept Lett 2003;10:91-7 https://doi.org/10.2174/0929866033408273
  30. Khanna N, Sen S, Sharma H, Singh N. S29 ribosomal protein induces apoptosis in H520 cells and sensitizes them to chemotherapy. Biochem Biophys Res Commun 2003;304:26-35 https://doi.org/10.1016/S0006-291X(03)00532-1
  31. Wild PJ, Krieg RC, Seidl J, Stoehr R, Reher K, Hofmann C, et al. RNA expression profiling of normal and tumor cells following photodynamic therapy with 5-aminolevulinic acid-induced protoporphyrin IX in vitro. Mol Cancer Ther 2005;4:516-28 https://doi.org/10.1158/1535-7163.MCT-04-0141