Microenvironments and Cellular Proliferation Affected by Oxygen Concentration in Non-Small Cell Lung Cancer Cell Line

비소세포폐암주에서 산소 농도에 따른 미세 배양 환경과 세포 증식능

  • Shin, Jong Wook (Division of Allergy, Respiratory and Critical Care Medicine, Department of Internal Medicine, Chung Ang University College of Medicine) ;
  • Jeon, Eun Ju (Division of Allergy, Respiratory and Critical Care Medicine, Department of Internal Medicine, Chung Ang University College of Medicine) ;
  • Kwak, Hee Won (Division of Allergy, Respiratory and Critical Care Medicine, Department of Internal Medicine, Chung Ang University College of Medicine) ;
  • Song, Ju Han (Division of Allergy, Respiratory and Critical Care Medicine, Department of Internal Medicine, Chung Ang University College of Medicine) ;
  • Lee, Young Woo (Division of Allergy, Respiratory and Critical Care Medicine, Department of Internal Medicine, Chung Ang University College of Medicine) ;
  • Jeong, Jae Woo (Division of Allergy, Respiratory and Critical Care Medicine, Department of Internal Medicine, Chung Ang University College of Medicine) ;
  • Choi, Jae Cheol (Division of Allergy, Respiratory and Critical Care Medicine, Department of Internal Medicine, Chung Ang University College of Medicine) ;
  • Kim, Jae-Yeol (Division of Allergy, Respiratory and Critical Care Medicine, Department of Internal Medicine, Chung Ang University College of Medicine) ;
  • Park, In Won (Division of Allergy, Respiratory and Critical Care Medicine, Department of Internal Medicine, Chung Ang University College of Medicine) ;
  • Choi, Byoung Whui (Division of Allergy, Respiratory and Critical Care Medicine, Department of Internal Medicine, Chung Ang University College of Medicine)
  • 신종욱 (중앙대학교 의과대학 내과학교실) ;
  • 전은주 (중앙대학교 의과대학 내과학교실) ;
  • 곽희원 (중앙대학교 의과대학 내과학교실) ;
  • 송주한 (중앙대학교 의과대학 내과학교실) ;
  • 이영우 (중앙대학교 의과대학 내과학교실) ;
  • 정재우 (중앙대학교 의과대학 내과학교실) ;
  • 최재철 (중앙대학교 의과대학 내과학교실) ;
  • 김재열 (중앙대학교 의과대학 내과학교실) ;
  • 박인원 (중앙대학교 의과대학 내과학교실) ;
  • 최병휘 (중앙대학교 의과대학 내과학교실)
  • Received : 2007.05.30
  • Accepted : 2007.09.14
  • Published : 2007.09.30

Abstract

Background: Abnormal angiogenesis can induce hypoxia within a highly proliferating tumor mass, and these hypoxic conditions can in turn create clinical problems, such as resistance to chemotherapy. However, the mechanism by which hypoxia induces these changes has not yet been determined. Therefore, this study was conducted to determine how hypoxia induces changes in cell viability and extracellular microenvironments in an in vitro culture system using non-small cell lung cancer cells. Methods: The non-small cell lung cancer cell line, A549 was cultured in DMEM or RPMI-1640 media that contained fetal bovine serum. A decrease in the oxygen tension of the media that contained the culture was then induced in a hypoxia microchamber using a $CO_2-N_2$ gas mixture. A gas analysis and an MTT assay were then conducted. Results: (1) The decrease in oxygen tension was checked the anaerobic gas mixture for 30 min and then reoxygenation was induced by adding a 5% $CO_2-room$ air gas mixture to the chamber. (2) Purging with the anaerobic gas mixture was found to decrease the further oxygen tension of cell culture media. (3) The low oxygen tension resulted in a low pH, lactic acidosis and a decreased glucose concentration in the media. (4) The decrease in glucose concentration that was observed as a result of hypoxia was markedly different when different types of media were evaluated. (5) The decrease in oxygen tension inhibited proliferation of A549 cells. Conclusion: These data suggests that tumor hypoxia is associated with acidosis and hypoglycemia, which have been implicated in the development of resistance to chemotherapy and radiotherapy.

배경 및 목적: 암세포는 빠른 증식 속도로 인하여 상대적인 저산소증에 노출되면서 비정상적인 종양 혈관을 형성하여 치명적인 병인을 형성한다. 저산소증에서의 암세포 내의 유전자 표현을 연구하는 것은 병인의 규명과 나아가 치료에 결정적인 단초를 제공할 수 있다. 이에 본 연구에서는 체외 배양한 비소세포폐암의 증식과 저산소증 상태에 대한 연구를 시행하였다. 재료 및 방법: 비소세포폐암주인 A549를 RPMI 배지에서 계대 배양하였다. 저산소 유사 상태는 Modular Incubator Chamber(MIC-101)을 이용하였고 5% 이산화탄소와 95% 질소 혼합 가스를 5분간 공급하여 저산소 상태를 만들었으며 세포 배양액을 채취하여 혈액가스분석기(Blood Gas Analyzer ABL 725)로 세포 배양 상태를 측정하였다. 대조군으로 5% $CO_2$와 멸균한 대기 공기 95%가 혼합된 가스를 사용하였다. 세포의 증식 상태는 MTT 방법을 실시하였다. 결과: 1. MIC-101을 이용하였을 때, 무산소혼합가스를 투여 후 30분에 50%의 산소 분압저하를 확인하였으며, 대기 가스에 의해 산소농도를 회복하는 것을 볼 수 있었다. 2. 무산소 혼합가스로 정화(purging)를 하면 산소의 분압을 더 낮출 수 있었다. 3. 저산소 상태에서 세포 배양액 내에는 pH 감소, 젖산 증가, 포도당의 감소와 같은 미세환경이 변하였다. 4. 세포배양액에 따라 저산소에 의해 유도되는 포도당 저하에 차이가 있었다. 5. 비소세포폐암주는 저산소에 의해 증식능이 억제되었다. 결론: 저산소 상태는 세포 배양액 내 포도당 농도의 감소, 젖산의 증가, pH의 감소 등 세포 배양 미세 환경을 변화시키며, 비소세포폐암세포는 증식이 억제된다. 저산소는 미세 환경 변화와 함께 직접적으로 그리고 간접적으로 비소세포의 증식능에 영향을 미친다.

Keywords

References

  1. O'Byrne KJ, Dalgleish AG, Browning MJ, Steward WP, Harris AL. The relationship between angio-genesis and the immune response in carcinogenesis and the progression of malignant disease. Eur J Cancer 2000;36:151-69 https://doi.org/10.1016/S0959-8049(99)00241-5
  2. Drown JM, The hypoxic cell: a target for selective cancer therapy-eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res 1999;69:6863-70
  3. Rofstad EK, Danielsen T. Hypoxia-induced metastasis of human melanoma cells: involvement of vascular endothelial growth factor-mediated angiogenesis. Br J Cancer 1999;80:1697-707 https://doi.org/10.1038/sj.bjc.6690586
  4. Rofstad EK, Mathiesen B, HBmiksen K, Kindem K, Galappathi K. The turner bed effect: increased metastatic dissemination from hypoxia-induced up-regulation of metastasis-promoting gene products. Cancer Res 2005;65:2387 -96 https://doi.org/10.1158/0008-5472.CAN-04-3039
  5. Buchler P, Reher HA, Lnvey RS, Tomlinson J, Buchler MW, Friess H, et al. Tumor hypoxia correlates with metastatic tumor growth of pancreatic cancer in an Olthctcpic murine model. J Surg Res 2004;120:295-303 https://doi.org/10.1016/j.jss.2004.02.014
  6. Cangul H. Hypoxia upregulates the expression of the NDRGI gene leading to its overexpression in various human cancers. BMC Genet 2004;5:27 https://doi.org/10.1186/1471-2156-5-27
  7. Song X, Liu X, Chi W, Liu Y, Wei L, Wang X, et al. Hypoxia-induced resistance to cisplatin and doxorubicin in non-small cell lung cancer is inhibited by silencing of HIP-lalpha gene. Cancer Chemother Pharmacol 2006;58:776-84 https://doi.org/10.1007/s00280-006-0224-7
  8. Koukourakis MI, Glatmmanolaki A, Sivridis E, Fezoulidis I. Cancer vascularization: impllcations in radiotherapy? Int J Radiat Oncol Biol Phys 2000;48: 545-53 https://doi.org/10.1016/S0360-3016(00)00677-5
  9. Swinson DE, O'Byrne KJ. Interactions between hypoxia and epidemlal growth factor receptor in non -small-cell lung cancer. Clin Lung Cancer 2000;7: 250-6 https://doi.org/10.3816/CLC.2006.n.002
  10. Swinson DE, Jones JL, Cox G, Richardson D, Harris Ai, O'Byrne KJ. Hypoxia-indccible factod rupba in non small cell lung cancer: relation to giuvvth factor, protease and apoptosis pathways. lnt J Cancer 2004;111:43-50
  11. Wang T, Nki T, Goto A, Uta S, Morikawa T, Nalcarnura Y, et al. Hypoxia increases the motility of lung adenocarcinoma cell line A549 via activation of the epidermal growth factor receptor pathway. Cancer Sci 2007;93:506-11
  12. Koshikawa N, Takenaga K, Tagawa M, Sakiyama S. Therapeutic efficacy of the suicide gene driven by the promoter of vascular' endothelial growth factor gene against hypoxic tumor cells. Cancer Res 2000;60: 2926-41
  13. Li i, Yu J, Xing L, Ma K, Zhu H, Guo H, et al. Selial hypoxia imaging with 99nTc-HL91 SPECT to predict radiotherapy response in nonsmall cell lung cancer. Am J Clin Oneal 2006;29:628-33 https://doi.org/10.1097/01.coc.0000242345.71582.e0
  14. Kobayashi S, Conforti L, Pun RY, Millhorn DE, Adenosine modulates hypoxia-induced responses in rat PCI2 cells via the A2A receptor. J Physiol 1998;508(Pt 1):95-107 https://doi.org/10.1111/j.1469-7793.1998.095br.x
  15. Ziemer LB, Lee WlvL Vinogradov SA, Sehgal C, Wilson DF. Oxygen distribution in murine tumors: characterization using oxygen-dependent quenching of phosphorescence. J Appl Physiol 2005;98:1503-10 https://doi.org/10.1152/japplphysiol.01140.2004
  16. Luo F, Liu X, Yan N, Li S, Cao G, Cheng Q, et al, Hypoxia-inducible transcription factor-alpha promotes hypoxia-induced A549 apoptosis via a mechanism that involves the glycolysis pathway. DMC Cancer 2006; 6:26
  17. Hussain SP, Harris OC. Molecular epidemiology of human cancer. Recent Results Cancer Res 1998;164: 22-36
  18. Volm M, Koomagi R Hypoxia-inducihle factor (HIF-l) and its relationship to apoptosis and proliferation in lung cancer. Anticancer Res 2000;20:1527-33
  19. Lee SM, Lee CT, Kim YW, Ban SK, Shim YS, Yoo CG. Hypoxia confers pmtection against apoptosis via PI3K/Akt and ERK pathways in lung cancer cells. Cencer Lett 2006;242:231-8 https://doi.org/10.1016/j.canlet.2005.11.001
  20. Mairhaurl H Wodopia R, Eckes S, Schulz S, Bartsch P. Impairment of cation transport in A649 cells and rat alveolar epithelial cells by hypoxia. Am J Physiol 1997;273:L797-806
  21. O'Kelly I, Peers C, Kemp HT. O2-sensitive K+ channels in neuroepithelial body-derived small cell careinoma cells of the human lung. Am J Physiol 1998;275:L709-16