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Abstract. The objective of this study is to develop an optimal joint cost from the perspectives of both the 
manufacturer and the retailer. The integrated production-inventory model with Weibull distribution deteriorating 
items is assumed to have a constant demand rate. A limited retailer storage space and multiple delivery per order 
are considered in this model. A numerical example including the sensitivity analysis is given to validate the 
results of the production-inventory model. 
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1.  INTRODUCTION 

The problem of deteriorating inventory has re-
ceived considerable attention in recent years. Deteriora-
tion is defined as change, damage, decay, evaporation, 
pilferage, spoilage, obsolescence and loss of utility or 
loss of marginal value of a commodity that results in 
decreasing usefulness from the original one. Products 
such as vegetables, fish, medicine, blood, alcohol, gaso-
line and radioactive chemicals have finite shelf life, and 
start to deteriorate once they are produced. Most re-
searches in deteriorating inventory assumed constant 
rate of deterioration. However, the Weibull distribution 
is used to represent the product in stock deteriorates 
with time. The deterioration rate increases with age. The 
longer the items remain unused, the higher the rate at 
which they fail is. 

Ghare and Schrader (1963) were two of the first authors 
who studied inventory problems considering deteriorat-
ing of items. Covert and Philip (1973) assumed a two-
parameter Weibull distribution deterioration to consider 

varying deterioration rate of deterioration. Specially, the 
Weibull distribution is used to represent the distribution 
of the time to deterioration. The rate of deterioration 
increased with age, or the longer the items remained 
unused, the higher the rate at which they failed. Wee 
(1999) developed a deterministic inventory model with 
quantity discount, pricing and partial backordering when 
the product in stock deteriorates with times. Wee and 
Law (2001) applied the discounted cash-flow approach 
to a deterministic inventory model of an item that dete-
riorates over time at varying rate and with a price-
dependent demand. Wang (2002) studied the inventory 
problem for deteriorating items with time-varying de-
mands and shortages over a finite planning horizon. He 
assumed the backlogging rate to be time-dependent. 
Skouri and Papachristos (2003) proposed an algorithm 
to find the optimal stopping and restarting production 
times for an EOQ model with deteriorating items and 
time-dependent partial backlogging. Papachristos and 
Skouri (2003) considered a model where the demand 
rate is a decreasing function of the selling price and the 
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backlogging rate is a time-dependent function. Abad 
(2003) considered the pricing and lot-sizing problem for 
perishable goods under finite production, exponential 
decay and partial backordering and lost sale. Goyal and 
Giri (2003) consider the production-inventory problem 
when the demand, production and deterioration rate are 
assumed to vary with time. Shortages are allowed to be 
backlogged partially. Papachristos and Skouri (2003) 
generalized the work of Wee (1999) and considered a 
model where the demand rate is a convex decreasing 
function of the selling price and the backlogging rate is 
a time-dependent function. 

The study on manufacturer-retail cooperation has 
received a great deal of attention from researchers in 
recent years. This is because decision made independ-
ently by one player will not result in global optimum. 
Traditionally, inventory models considered the different 
sub-systems in the supply chain independently. Since 
the last decade, several authors have studied the inte-
grated inventory models in which the manufacturers and 
the retailers coordinate their production and ordering 
policies in order to lower the joint inventory costs. 
Communication and information technology advance-
ment play an important role in improving the perform-
ance of inventory control. Due to increasing competition 
and market globalization, enterprises must develop sup-
ply chain that can respond quickly to customers’ needs. 
Global optimality will only be realized if the perspec-
tives of all players are considered. In the supply chain, 
the cooperation should take account of the limited re-
sources. Whenever the storage capacity of the company 
warehouse is insufficient, excess stock is held in a 
rented warehouse (which is more expensive). 

Several authors have studied the integrated inven-
tory models in which the manufacturers and the retailers 
coordinate their production and ordering policies, in 
order to lower the joint inventory costs. Goyal (1976) 
were among the first authors who studied manufacturer-
retailer inventory in the integrated supply chain. Since 
then, a number of studies on manufacturer-retailer in-
ventory models have been done. Hill (1997) incorpo-
rated the effect of finite replenishment rate and multiple 
delivery to respond quality to demand. Goyal and Ne-
bebe (2000) developed an economic production and 
shipment policy from vendors’ perspective. Woo et al 
(2001) developed an integrated vendor-buyer inventory 
policy to minimize joint total cost. Rau et al. (2003) 
developed a multi-echelon inventory model for a dete-
riorating item and derived an optimal joint total cost 
from the perspectives of the supplier, the producer, and 
the buyer. Yang and Wee (2003) developed an inte-
grated inventory model for single-vendor and single-
buyer with constant deterioration rate of deterioration 
and multiple delivery per order. Sana et al. (2004) devel-
oped a production-inventory model for a deteriorating 
item with trended demand and shortages. Banerjee (2005) 
developed a model to simultaneously determine the in-
ventory policies of the supplier and the buyer with con-

tractual agreement. 
Most of the previous works on inventory models 

did not consider simultaneously the above-mentioned 
factors. This is not true in real life since the above fac-
tors are significant. For this reason, we incorporated 
manufacturer-retailer cooperation to develop an inte-
grated production-inventory model. The main contribu-
tion of our study is to consider the factors such as 
Weibull distribution, multiple delivery and limited re-
sources simultaneously in a model. To the best of our 
knowledge, this type of model has not been developed 
before. Our objective is to minimize the total cost per 
unit time. The classical optimization technique is used to 
derive the optimal solution. A numerical example in-
cluding the sensitivity analysis is given to validate the 
results of the production-inventory model. 

2. ASSUMPTION AND NOTATION 

The mathematical model in this paper is developed 
based on the following assumptions: 

 
1. Customer’s demand rate is known and constant. 
2. The production rate is finite and constant, larger 

than the demand rate and is unaffected by the lot 
size. 

3. The study considered manufacturer-retailer coopera-
tion. Shortages are not allowed. 

4. Deterioration of the item follows a two-parameter 
Weibull distribution, and the deteriorated units are 
not replaced. 

5. Deterioration occurs as soon as items are received 
into inventory. 

6. Carrying cost applies to good units only. 
7. Single producer and single distributor are consid-

ered. 
8. Multiple delivery per order is considered. 
9. There is only one production cycle per order. 
10. The planning horizon is infinite. 

 
The following notation is used throughout the paper: 
 

p  Production rate (units/unit time) 
d  Consumer’s demand rate (units/unit time), p d>  
g  Raw material’s scale parameter for the deteriora-

tion rate 
h  Raw material’s shape parameter for the deterio-

ration rate 
a  Finished goods’ scale parameter for the deterio-

ration rate 
b

 Finished goods’ shape parameter for the deterio-
ration rate 

wQ  Manufacturer’s raw materials order quantity per 
order 

mQ  Manufacturer’s finished goods production quan-
tity per production 

rQ  Retailer’s received quantity per delivery from 
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the manufacturer 

mI  Manufacturer’s finished goods maximum inven-
tory level 

n  The number of delivery per order 

1T  Production time when inventory builds up 

2T  Time period when there is no production and 
inventory depletes 

3T  Time with positive inventory in the retailer’s 
inventory system, 3T T n=  

T  Length of the cycle, 1 2T T T= +  

1( )wI t  Manufacturer’s raw materials inventory level at 
any time 1t , 1 10 t T£ £  

( )mi iI t  Manufacturer’s inventory level at any time t , 
0 i it T£ £ , 1, 2i =  

3( )rI t  Retailer’s inventory level at any time 3t , 30 t£  

3T£  

1wC  Manufacturer’s ordering cost per order cycle 
($/cycle) 

1mC  Manufacturer’s setup cost per production cycle 
($/cycle) 

1rC  Retailer’s ordering cost per order cycle ($/order) 

2wC  Manufacturer’s raw materials per unit holding 
cost per unit time ($/unit/unit time) 

2mC  Manufacturer’s per unit holding cost per unit 
time ($/unit/unit time) 

2rC  Retailer’s per unit holding cost per unit time 
($/unit/unit time) 

wC  Manufacturer’s raw materials per unit cost 
($/unit) 

mC  Manufacturer’s finished goods per unit cost 
($/unit) 

rC  Retailer’s finished goods per unit cost ($/unit) 

mK  Manufacturer’s transportation cost per delivery 
($/delivery) 

rK  Retailer’s incoming quality control cost per de-
livery ($/delivery) 

wTUC  Raw material’s total cost per unit time ($/unit 
time) 

mTUC  Manufacturer’s total cost per unit time ($/unit 
time) 

rTUC  Retailer’s total cost per unit time ($/unit time) 
TUC  Integrated total cost function including wTUC , 

mTUC  and rTUC  per unit time ($/unit time) 
F  Retailer’s maximum limited storage space 
f  Retailer’s storage requirement for each unit 

3.  MODEL DEVELOPMENT 

This integrated material flow is shown in Figure 1. 
Because we focused on manufacturer-retailer coopera-
tion, there are two stages in our model. The first stage is 
the manufacturer’s production system. The manufac-
turer procures raw materials from outside suppliers and 
delivers the fixed quantities to the manufacturers’ ware-
house at a fixed-time interval. The manufacturer with-
draws raw materials from the warehouse to produce the 
finished goods. The second stage is the retailer’s inven-

tory system. Fixed quantities of finished goods with 
multiple delivery are delivered to the retailer at a fixed-
time interval. 

 

Material flow

Information flow

Raw

materials
Production Finished

goods

Finished

goods

Manufacturer-retailer cooperation

Manufacturer Retailer CustomerSuppliers

wQ
rQ

mQ

 

Figure 1. The integrated material flow 
 
The raw material’s inventory system is shown in 

Figure 2a. A supplier procures the raw materials and 
delivers the fixed quantities, wQ , to the manufacturer’s 
warehouse at a fixed-time interval. The manufacturer 
withdraws raw materials from the warehouse. During 
the 1T  time period, the inventory level decreases due to 
both the manufacturer’s demand and deterioration. 

The manufacturer’s inventory system in Figure 2b 
can be divided into two independent phases depicted by 

1T  to 2T . This methodology reduces the complexity in 
our problem derivation and analysis. Each phase has its 
own time unit, it , which starts from the beginning of 
the phase, iT . During 1T  time period, there is an in-
ventory buildup. At 1 1t T= , the production stops and the 
inventory level increases to its maximum, mI . There is 
no production during 2T  time period and the inventory 
level decreases due to demand and deterioration. The 
inventory level becomes zero at 2 2t T= . 

The change in raw material’s inventory level is de-
picted in Figure 2c. At 3 0t = , the initial replenishment 
is made in the retailer’s inventory system. During 3T  
time period, the inventory level decreases due to both 
demand and deterioration. At 3 3t T= , the inventory 
level is zero. There are n  delivery in T  time period. 

 

0
time

1T

1( )wI t

wQ

1t

 
 
Figure 2a. The raw materials’ inventory system 



4 Hui-Ming Wee·Sh-Tyan Law·Jonas Yu 
 

 

1T

( )mi iI t

mI

1t
0 time

without delivery

2t

2T
 

Figure 2b. The manufacturer’s inventory system 
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3( )rI t

rQ

3t
0 time

 
Figure 2c. The retailer’s inventory system 

 
The derivations of cost are provided in this section. 

It is difficult to formulate an exact solution when we 
used Weibull distribution in this model. To derive an 
approximation, we make the following assumptions. 
The cost can be computed by applying the Taylor’s se-
ries expansion. For very small g  and a  values ( ,g  

1<<a ), the second and higher order terms of g  and 
a  are neglected. The derivation of each term is as fol-
lows: 

3.1 Manufacturer’s Raw Materials Inventory System 

The manufacturer’s raw materials inventory system 
at any time t  can be represented by the following dif-
ferential equation: 

11
1 1

1

( )
( )hw

w

dI t
p ght I t

dt
-= - - , 1 10 t T£ £   (1) 

Using the boundary condition, 1( ) 0wI T = , the first- 
order differential equation can be solved is  

1
1

1
1( )

h hTgt gu
w t

I t pe e du-= ò , 1 10 t T£ £  (2) 

Based on Figure 2a and (0)w wI Q= , the maximum 
inventory level of the raw materials, i.e., the order quan-
tity per order from outside suppliers is 

1

0

hT
gu

wQ p e du= ò
1

0
0

( )

!

h m
T

m

gu
p du

m

¥

=

= åò
1

1
1

1

hgT
p T

h

+æ ö
» +ç ÷

+è ø
 

(3) 

(1) At the start of the cycle, the cycle has an initial re-
plenishment ordering cost. The ordering cost is 

1w wOR C=                   (4) 

(2) Inventory occurs during 1T  time period. The hold-
ing cost is 

1

2 10
( )

T

w w wHD C I t dt= ò  

1 1
1

1
2 10

{ }
h hT Tgt gu

w t
C pe e du dt-= ò ò  

1 1

1

1
2 10

0 0

( ) ( )
 

! !

h m h m
T T

w t
m m

gt gu
C p du dt

m m

¥ ¥

= =

ì üé ù é ù-ï ï
= í ýê ú ê ú

ï ïë ûë ûî þ
å åò ò  

2 2
1 1

2
2 ( 1)( 2)

h

w

T ghT
C p

h h

+ì ü
» +í ý

+ +î þ
               (5) 

(3) The item cost includes loss due to deterioration as 
well as the cost of the item sold. The item cost is 

1
1

1
1

h

w w w w

gT
IT C Q C p T

h

+æ ö
= » +ç ÷

+è ø
         (6) 

The total cost during the cycle is the sum of the or-
dering cost ( wOR ), the holding cost ( wHD ) and the item 
cost ( wIT ). For raw materials, the total cost per unit time 
is 

w w w
w

OR HD IT
TUC

T

+ +
=            (7) 

3.2 Manufacturer’s Finished Goods Inventory System 

In Figure 2b, the inventory system without delivery 
can be represented by the following differential equation: 

11 1
1 1 1

1

( )
( )m

m

dI t
p d t I t

dt
bab -= - -  1 10 t T£ £  (8) 

12 2
2 2 2

2

( )
( )m

m

dI t
d t I t

dt
bab -= - -  2 20 t T£ £  (9) 

The first-order differential equations can be solved 
by using the boundary conditions 1(0) 0mI = , 2 2( )mI T  

0,=  one has 

1
1

1 1 0
( ) ( )

tt u
mI t p d e e du-= - ò

b ba a , 1 10 t T£ £  (10) 

2
2

2
2 2( )

Tt u
m t

I t de e du-= ò
b ba a , 2 20 t T£ £  (11) 

Based on Figure 2b and 2 (0)m mI I= , the maxi-
mum inventory level of the finished goods is  

2

0

T
u

mI d e du= ò
ba 2

0
0

( )

!

m
T

m

u
d du

m

¥

=

æ ö
= ç ÷

è ø
åò

ba
 

1
2

2
1

T
d T

ba

b

+æ ö
» +ç ÷

+è ø
                     (12) 
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The production quantity is  

1mQ pT=                (13) 

(1) The cycle has an initial production set-up cost, 1mC , 
at the start of the cycle. The set-up cost includes the 
transportation cost is 

1m mSE C nK= +             (14) 

(2) Inventory is carried during 1T  and 2T  time peri-
ods. The last term in equation (15) is the holding 
cost of the items that are delivered to the retailer. 
The present worth of holding cost is 

 

mHD  

{ }1 2

2 1 1 1 2 2 20 0
( ) ( )

T T

mC I t dt I t dt= +ò ò  

{ }3

2 3 30
( )

T

m rn C I t dt- ò  

{ }1 1
1

2 1
0 0

( )
T tt u

mC p d e e du dt-= -ò ò
b ba a  

{ }2 2
2

2
2 2

0

T Tt u
m

t
C de e du dt

b b-a a+ ò ò  

3 3
3

3
2 30

uT Tt

m t
n C de e du dt-ì üé ùï ï

- í ýê ú
ï ïë ûî þ

ò ò
b

b a
a  

1 11
2 1

0 0
0 0

( ) ( )
( )

! !

m m
T t

m
m m
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C p d du dt

m m

¥ ¥
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ì üé ù æ ö-ï ï
= - í ýç ÷ê ú

ï ïè øë ûî þ
å åò ò

b ba a
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t
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ì üé ù é ù-ï ï
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ï ïë ûë ûî þ
å åò ò
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ì üé ùæ ö æ ö-ï ï
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ê úè øè øï ïë ûî þ
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2 2
1 1
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m
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+ì ü
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2 2
2 2

2
2 ( 1)( 2)

m

T T
C d

+ì ü
+ +í ý

+ +î þ
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b b
 

2 2
3 3

2
2 ( 1)( 2)

m

T T
nC d

bab

b b

+ì ü
- +í ý

+ +î þ
 (15) 

(3) Production occurs during 1T  time period. The item 
cost includes loss due to deterioration as well as the 
cost of the item sold. The item cost is 

1m m m mIT C Q C pT= =             (16) 

The total cost during the cycle is the sum of the set-
up cost ( SE ), the holding cost ( mHD ) and the item cost 
( mIT ). The present worth total cost per unit time is 

m m
m

SE HD IT
TUC

T

+ +
=            (17) 

3.3 Retailer’s Inventory System 

The retailer’s inventory system can be represented 
by the following differential equation: 

13
3 3

3

( )
( )r

r

dI t
d t I t

dt
bab -= - - , 3 30 t T£ £  (18) 

Using the boundary condition, 3( ) 0rI T = , the first- 
order differential equation can be solved. One has 

3
3

3
3( )

Tt u
r t

I t de e du-= ò
b ba a , 3 30 t T£ £  (19) 

From Figure 2c and 3( ) 0rI T = , the retailer’s 
maximum inventory level is the received quantity per 
delivery from the manufacturer. One has 

3

0

T
u

rQ d e du= ò
ba 3

0
0

( )

!

m
T

m

u
d du

m

ba¥

=

æ ö
= ç ÷

è ø
åò  

1
3

3
1

T
d T

ba

b

+æ ö
» +ç ÷

+è ø
                      (20) 

(1) The delivery has an initial ordering cost, 1rC , at the 
start of the delivery. The ordering cost includes in-
coming quality cost is 

1r r rOR C K= +               (21) 

(2) Inventory occurs during 3T  time period. The hold-
ing cost is 

{ }3

2 1 3 30
( )

T

r r rHD C I t dt= ò  

{ }3 3
3

3
2 30

T Tt u
r t

C de e du dt-= ò ò
b ba a  

3 3

3

3
2 30

0 0

( ) ( )

! !

m m
T T

r t
m m

t u
C d du dt

m m

¥ ¥

= =

ì üé ù é ù-ï ï
= í ýê ú ê ú

ï ïë ûë ûî þ
å åò ò

b ba a
 

2 2
3 3

2
2 ( 1)( 2)

r

T T
C d

+ì ü
» +í ý

+ +î þ

bab

b b
               (22) 

(3) The item cost includes loss due to deterioration as 
well as the cost of the item sold. The item cost is 

r r rIT C Q=
1

3
3

1
r

T
C d T

ba

b

+æ ö
» +ç ÷

+è ø
         (23) 

The total cost during the delivery is the sum of the 
ordering cost ( rOR ), the holding cost ( rHD ) and the 
item cost ( rIT ). The total cost per delivery is 

' r r r
r

OR HD IT
TUC

T

+ +
=             (24) 

There are n  delivery per cycle. The fixed-time in-
terval between the delivery is 3 /T T n= . Therefore, the 
total cost per cycle is 
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'
r rTUC nTUC= r r rOR HD IT

n
T

+ +æ ö
= ç ÷

è ø
     (25) 

The time periods can be computed by applying the 
Taylor’s series expansion. In order to solve the objec-
tive function, represent 1T  by 2T . From 1 1( )m mI I T=  

2 (0)mI= , one has 

1 2
1

0 0
( )

T TT u up d e e du d e du-- =ò ò
b b ba a a       (26) 

For a very small a  value, the second and higher 
order terms of a  are neglected. Equation (26) can be 
simplified as 

1 1
1 2

1 1 2( )(1 )
1 1

T T
p d T T d T

b b
b a a

a
b b

+ +æ ö æ ö
- - + » +ç ÷ ç ÷

+ +è ø è ø
  (27) 

Since 1T  in (27) is a high-power equation, it is dif-
ficult to solve analytically for the value of 1T . When 

1 1Ta << , the method used in Misra (1975), where 
1

1 / 1T bab b+ +  is neglected, results in the following 
approximate value for 1T  

1
2

1 2
1

Td
T T

p d

ba

b

+æ ö
» +ç ÷

- +è ø
           (28) 

The objective of this study is to develop an inte-
grated production-inventory model from the perspec-
tives of both the manufacturer and the retailer. For very 
small g  and a  values ( , 1g a << ), an approximate 
model with multiple delivery is developed to derive the 
optimal production policy and lot-size. The total cost per 
unit time of the manufacturer and the retailer is the sum 
of wTUC , mTUC  and rTUC . Since 3 /T T n=  and 

1 2T T T= + , the objective function can be stated as 

2( , ) w m rTUC n T TUC TUC TUC= + + . If the retailer’s 
storage space limited to a maximum inventory size of 
F , the problem can be stated as  

Minimize: 2( , ) w m rTUC n T TUC TUC TUC= + +  (29) 

Subject to: rfQ F£  (30) 

The optimal inventory levels can be derived by us-
ing Lagrange multipliers, one has 

2 2( , , ) ( , ) ( )rH n T TUC n T fQ Fl l= + -      (31) 

4. SOLUTION PROCEDURE 

The following technique is used to derive the opti-
mal value of n  and 2T ; 

 
Step 1 Since the number of delivery per order, n , is 

an integer value, start by choosing an integer 
value of 1n ³ . 

Step 2 Take the partial derivatives of 2( , , )H n Tl  

with respect to l  and 2T , and equate the re-
sults to zero. The necessary conditions for op-
timality are 

    2( , , )
0

H n T¶
=

¶

l

l
 and 2

2

( , , )
0

H n T

T

¶
=

¶

l
 

The simultaneous equations above can be solved 
for l  and 2T . 

Step 3 Using l  and 2T  found at step 2, substitute 
into equation (31) and derive 2( , , )H n Tl . 

Step 4 Repeat steps 2 and 3 for all possible n  values 
until the minimum * * *

1( , , )H n Tl  is found. The 
* * *

1( , , )H n Tl  values constitute the optimal 
solution that satisfy the following conditions: 

* * * *
2 2( 1, , ) ( , , )H n T H n T- ³l l , and 

* * * *
2 2( , , ) ( 1, , )H n T H n T£ +l l . 

Step 5 Derive the *
1 ,T  *

3 ,T  * ,T  ,wQ  ,mQ  ,rQ  ,wTUC  

mTUC , rTUC  and *TUC . 

5. NUMERICAL EXAMPLE 

Optimal production and replenishment policy to 
minimize the total cost per unit time may be obtained by 
using the methodology proposed in the preceding sec-
tions. The following numerical example is illustrated the 
model. 

Let production rate 2,000,000p = ; demand rate 
500,000d = ; ordering cost 1 $1,000wC = , 1 $2,000rC = ; 

set-up cost 1 $100,000mC = ; transportation cost mK =  
1,000 ; quality-control cost 500rK = ; carrying cost 

2 $20wC = , 2 $40mC = , 2 $60rC = ; item cost $200wC = , 
$400mC = , $600rC = ; deterioration rate 0.1g = , 2h= , 

0.2a = , 2b = ; maximum limited storage space F =  
2,000 ; storage requirement for each unit 2f = . 

The computational results are shown in Table 1. Ta-
ble 2 is the comparison of results for the above special 
conditions 

The major conclusions and the special conditions 
drawn from the numerical example are as follows: 

 
(1) In this example, *TUC  is $6037.31 510´  while the 

optimal values of * ,n  *
1T , *

2T  and *
3T  are 49, 

245.07 410-´ , 734.93 410-´  and 20.00 410-´  re-
spectively. For the raw materials, wQ  is 49.14.20 
units. As for the finished goods, mQ  is 49013.22 
units and rQ  is 1000.00 units. 

(2) Since TUC  is a very complicated function, it is 
not possible to show analytically the validity of the 
above sufficient conditions. A graphical representa-
tion and numerical analysis are used to show the 
convexity of theTUC . Based on the above analysis 
and the graphical representation of Figure 3, one 
can say that TUC  is a convex function. 

(3) When n  increases, 1T  and 2T  will increase. At 
this time, the time period between delivery, 3T , will 
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remain unchanged. When the production quantity 
increases, the number of the delivery increases. 

(4) If the optimal solution is derived solely from the raw 
material’s view, *n  is 13 and *TUC  is $6058.78´  

510´ , an increase of $21.47 510´  per unit time as 
compared with our example. If the optimal solution 
is derived solely from the manufacturer’s view, *n  
is 54 and *TUC  is $6037.41 510´ , an increase of 
$0.1 510´  per unit time as compared with our ex-
ample. The decision to include the viewpoints of 
both of the retailer and the manufacturer results in a 
lower TUC . 

(5) When there is a single delivery (i.e. 1n = ), *TUC  
is $6522.73 510´ . An increase of $485.42 510´  per 
unit time as compared with our example. 

(6) When deterioration is not considered (i.e. , 0g =a ), 
*n  is 54 and *TUC  is  $6036.40 510´ . A decrease 

of  $0.91 510´  per unit time as compared with our 
example. 

(7) When the item deteriorates exponentially (i.e. h , 
1b = ), *n  is 31 and *TUC  is  $6051.15 510´ . An 

increase of  $13.84 510´  per unit time as compared 
with our example. 

 

TUC(*10^5)

6070

6065

6060

6055

6050

6045

6040

10 20 30 40 50 60 70 80

n  

Figure 3. Graphical representation of a convex TUC  

Table 1. The numerical results for illustrate example 

n  l  1T ( 410- ) 2T ( 410- ) 3T ( 410- ) wTUC ( 510 ) mTUC ( 510 ) rTUC ( 510 ) TUC ( 510 ) 

10 3303.96 50.00 150.00 20.00 1000.76 2056.32 3012.80 6069.89 

12 5864.10 60.00 180.00 20.00 1000.74 2048.30 3012.80 6061.83 

13 2692.63 65.00 195.00 20.00 1000.73& 2045.25 3012.80 6058.78 

14 2544.20 70.00 210.00 20.00 1000.74 2042.66 3012.80 6056.19 

20 1943.56 100.00 300.00 20.00 1000.80 2032.89 3012.80 6046.49 

30 1417.88 150.02 449.98 20.00 1001.03 2026.17 3012.80 6040.00 

40 1095.64 200.04 599.96 20.00 1001.32 2023.66 3012.80 6037.78 

48 895.95 240.06 719.94 20.00 1001.58 2022.94 3012.80 6037.32 

49 873.09 245.07 734.93 20.00 1001.62 2022.90 3012.80 6037.31* 

50 850.59 250.07 749.93 20.00 1001.65 2022.86 3012.80 6037.32 

53 785.00 265.08 794.92 20.00 1001.76 2022.82 3012.80 6037.38 

54 763.71 270.09 809.91 20.00 1001.80 2088.81# 3012.80 6037.41 

55 742.66 275.09 824.91 20.00 1001.83 2022.82 3012.80 6037.46 

60 640.63 300.12 899.87 20.00 1002.02 2022.95 3012.80 6037.77 

70 447.71 350.19 1049.81 20.00 1002.42 2023.55 3012.80 6038.77 

80 262.81 400.29 119.97 20.00 1002.84 2024.50 3012.80 6040.14 

& : The optimal solution from the raw material’s view ( wTUC ) 
# : The optimal solution from the manufacturer’s view ( mTUC ) 
* : The optimal solution from the integrated view (TUC ) 

 
Table 2. Comparison of results for special conditions 

 n  l  1T ( 410- ) 2T ( 410- ) 3T ( 410- ) wTUC ( 510 ) mTUC ( 510 ) rTUC ( 510 ) TUC ( 510 ) 

Our example 49 873.09 245.07 734.93 20.00 1001.62 2022.90 3012.80 6037.31 

Single delivery 1 26108.60 5.00 15.00 20.00 1005.02 2504.90 3012.80 6522.73 

0g = , 0a =  54 865.09 270.00 810.00 20.00 1001.44 2022.16 3012.80 6036.40 

1h = , 1b =  31 822.08 155.51 464.37 20.00 1005.20 2032.55 3013.40 6051.15 
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6. SENSITIVITY ANALYSIS 

In order to study how the parameters affect the op-
timal solution, we conduct the sensitivity analysis for all 
parameters. For the numerical example given above, we 
derive the optimal values of *n  and *TC  for a fixed 
subset {S p= , ,d 1 ,wC 1 ,mC 1 ,rC ,mK ,rK 2 ,wC 2 ,mC 2 ,rC  

,wC ,mC ,rC ,g ,h ,a ,b ,f }.F  The base column of S 
is {2,000,000,S =  500,000,  1,000,  100,000,  2,000,  
1,000, 500, 20, 40, 60, 200, 400, 600, 0.1, 2, 0.2, 2,  
2,000, 2} . The optimal values of 0n , 0

1T , 0
2T  and 

0TUC  are derived when one of the parameters in the 
subset S increases or decreases by 5% while all the other 
parameters remain unchanged. The results of 0

1T  and 
0

2T  are presented in Table 2. The results of the sensitiv-
ity analysis are shown in Table 3. The percentage of cost 
increase index ( PCI ) is defined as 

0 *

*
100%

TUC TUC
PCI

TUC

-
= ´  

The main conclusions draws from the sensitivity 
analysis are as follow: 

 
(1) Because d  affects the two stages of the system 

directly, the value of PCI  is the most sensitive to 
d . When d  increases by 10%, the value of PCI  
increases by about 10%. The values of PCI  are 
more sensitive to the parameters ,d ,wC mC  and rC . 

(2) The values of PCI  are least sensitive to the pa-
rameters p , 1wC , rK , 2wC , 2rC , g , h  and a . 
When these parameters increase by 10%, the value 
of PCI  increases by less 0.01%. 1wC  and rK  
influence only the ordering cost. 2wC  and 2rC  in-
fluence only the holding cost. g  and h  influence 
only the raw material. 

(3) The parameters ,p ,d 1 ,wC  1 ,mC  1 ,rC  ,mK  rK , 

2 ,wC  2 ,mC  2 ,rC  ,mC  rC , rC , a  and f  influ-
ence the value of PCI  in the same direction. The 
parameters h , b  and F  influence the value of 

 
 

Table 2. The sensitivity analysis of 1T  and 2T  

-10% changed -5% changed +5% changed +10% changed 
 

l  
0

1T  0
2T  l  

0
1T  0

2T  l  0
1T  0

2T  l  0
1T  0

2T  

p  866.12 277.85 722.15 880.31 257.96 722.04 866.42 233.40 746.40 860.24 222.79 757.21 

d  778.65 230.07 792.15 814.69 240.07 770.5 908.36 255.06 716.36 965.33 260.06 685.40 

1wC  872.58 245.07 734.97 872.84 245.07 734.93 873.35 245.07 734.93 873.60 245.07 734.93 

1mC  866.01 235.06 704.94 869.91 235.06 719.94 875.59 250.07 749.93 877.44 255.07 764.93 

1rC  823.09 245.07 734.93 848.09 245.07 734.93 898.09 245.07 734.93 923.09 245.07 734.93 

mK  848.09 245.07 734.93 860.59 245.07 734.93 885.59 245.07 734.93 898.09 245.07 734.93 

rK  860.59 245.07 734.93 866.84 245.07 734.93 879.34 245.07 734.93 885.59 245.07 734.93 

2wC  879.23 245.07 734.93 876.16 245.07 734.93 870.02 245.07 734.93 866.96 245.07 734.93 

2mC  865.71 255.07 764.93 868.86 250.07 749.93 878.44 240.06 719.94 860.93 240.06 719.94 

2rC  874.59 245.07 734.93 873.84 245.07 734.93 872.34 245.07 734.93 871.59 245.07 734.93 

wC  875.99 245.07 734.93 874.54 245.07 734.93 871.64 245.07 734.93 870.19 245.07 734.93 

mC  878.49 245.07 734.93 875.79 245.07 734.93 870.39 245.07 734.93 867.69 245.07 734.93 

rC  873.10 245.07 734.93 873.10 245.07 734.93 873.09 245.07 734.93 873.08 245.07 734.93 

g  873.29 245.07 734.93 873.19 245.07 734.93 872.99 245.07 734.93 872.89 245.07 734.93 

h  871.04 245.07 734.93 872.24 245.07 734.93 873.69 245.07 734.93 874.11 245.07 734.93 

a  881.23 245.06 734.94 877.16 245.06 734.94 869.02 245.07 734.93 864.95 245.07 734.93 

b  871.23 235.11 704.89 874.15 240.08 719.92 868.90 250.05 749.95 862.26 255.04 764.96 

f  787.54 244.51 733.27 818.37 247.44 742.04 905.26 247.69 742.79 959.00 245.52 736.30 

F  1066.15 247.57 742.43 958.27 247.07 740.93 784.05 246.82 740.18 710.67 247.57 742.43 

* : 410iT -´ , 1, 2i =  
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PCI  in the opposite direction. 
(4) The value of n  is more sensitive to the parameters 

d , 1mC , 2mC , b , f  and F . The higher parame-
ter value of d , 1mC , b  and f  result in the higher 
value of n . The value of 1T  and 2T  are more sen-
sitive to the parameters p , d , 1mC , 2mC , b  and F . 

7. CONCLUSION 

This study develops an optimal joint cost from the 
perspectives of both the manufacturer and the retailer. 
The integrated production-inventory model with Weibull 
distribution deteriorating items is assumed to have a 
constant demand rate and a limited retailer storage space. 
A numerical example including the sensitivity analysis 
is given to validate the results of the production-
inventory model. 

Multiple delivery is one of the important policies of 
a successful enterprise. The integrated decision results 
in lower optimal joint cost compared with an independ-

ent decision by the manufacturer. The study is particu-
larly useful for the inventory systems where the manu-
facturers and their retailers form a strategic alliance with 
a mutually beneficial objective. To make it acceptable to 
both parties, the integrated policy should offer some 
kind of profit sharing policy. The profit sharing policy 
can be in the form of advanced payment or quantity dis-
counts. As a result of this policy, both the manufacturer 
and the retailer will benefit in the long run. The applica-
tion of profit sharing policy is an area worthy of study-
ing for future research. Future research can be done for 
multi-manufacturer-retailer chain as well as considering 
a warranty policy in the modeling. 
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Table 3. The percentage cost increase ( PCI ) of the parameters 

-10% changed -5% changed +5% changed +10% changed 
 

n  
0TUC  PCI n  

0TUC  PCI n  
0TUC  PCI n  

0TUC  PCI 

p  50 6037.09 0.00 49 6037.21 0.00 49 6037.41 0.00 49 6037.50 0.00 

d  46 5434.79 -9.98 48 5736.06 -4.99 51 6338.54 4.99 52 6639.78 9.98 

1wC  49 6037.30 0.00 49 6037.31 0.00 49 6037.32 0.00 49 6037.32 0.00 

1mC  47 6036.27 -0.02 48 6036.80 -0.01 50 6037.82 0.01 51 6038.31 0.02 

1rC  49 6036.31 -0.02 49 6036.81 -0.01 49 6037.81 0.01 49 6038.31 0.02 

mK  49 6036.81 -0.01 49 6037.06 0.00 49 6037.56 0.00 49 6037.81 0.01 

rK  49 6037.06 0.00 49 6037.19 0.00 49 6037.44 0.00 49 6037.56 0.00 

2wC  49 6037.19 0.00 49 6037.25 0.00 49 6037.38 0.00 49 6037.44 0.00 

2mC  51 6036.58 -0.01 50 6036.95 -0.01 48 6037.67 0.01 48 6038.02 0.01 

2rC  49 6037.28 0.00 49 6037.30 0.00 49 6037.33 0.00 49 6037.34 0.00 

wC  49 5937.29 -1.66 49 5987.30 -0.83 49 6087.33 0.83 49 6137.34 1.66 

mC  49 5837.26 -3.31 49 5937.29 -1.66 49 6137.34 1.66 49 6237.37 3.31 

rC  49 5737.31 -4.97 49 5887.31 -2.48 49 6187.31 2.48 49 6337.31 4.97 

g  49 6037.31 0.00 49 6037.31 0.00 49 6037.32 0.00 49 6037.32 0.00 

h  49 6037.34 0.00 49 6037.32 0.00 49 6037.31 0.00 49 6037.30 0.00 

a  49 6037.23 0.00 49 6037.27 0.00 49 6037.36 0.00 49 6037.40 0.00 

b  47 6037.95 0.01 48 6037.59 0.00 50 6037.10 0.00 51 6036.94 -0.01 

f  44 6035.58 -0.03 47 6036.45 -0.01 52 6038.19 0.01 54 6039.06 0.03 

F  55 6039.25 0.03 52 6038.23 0.02 47 6036.49 -0.01 45 6035.73 -0.03 

* : 0TUC 510´  
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