Changes in Properties and Surface FT-IR Spectra of Wood Charcoal at Different Carbonization Temperatures

탄화온도에 따른 목탄 특성 및 표면의 FT-IR 변화

  • Lee, Oh-Kyu (Div. of Wood Chemistry & Microbiology, Korea Forest Research Institute) ;
  • Jo, Tae-Su (Div. of Wood Chemistry & Microbiology, Korea Forest Research Institute) ;
  • Choi, Joon-Weon (Div. of Wood Chemistry & Microbiology, Korea Forest Research Institute)
  • 이오규 (국립산림과학원 화학미생물과) ;
  • 조태수 (국립산림과학원 화학미생물과) ;
  • 최준원 (국립산림과학원 화학미생물과)
  • Received : 2007.06.01
  • Accepted : 2007.06.18
  • Published : 2007.07.25

Abstract

To analyze the changes in pH and elemental content ratio of wood charcoal and in FT-IR spectra of their surfaces, wood charcoals carbonized from Pinus koraiensis were used. pHs of wood charcoals carbonized from Pinus koraiensis at 300 and $400^{\circ}C$ were 5-27 and 6.80, respectively, whereas they were between 9.25~10.35 for the wood charcoals manufactured between $500{\sim}900^{\circ}C$ From the changes in the elemental ratios of Pinus koraiensis wood charcoal by increasing carbonization temperature, carbon (C) contents increased by elevating the carbonization temperature with the decreasing in content ratios of O and H. The largest changes in the ratio was found between the carbonization temperature 400 and $500^{\circ}C$. Ratios of C, O, H of the wood charcoal manufactured at 300 and $400^{\circ}C$ were 67.7, 28.9, 3.0% and 72.2, 24.9, 2.5%, respectively, while those at $500{\sim}900^{\circ}C$ were between 83.3~90.5, 13.6~9.0, 2.7~0.3%. The surface functional groups of Pinus koraiensis wood charcoals were determined by comparison of FT-IR spectra of the wood powder and the wood charcoal carbonized with the wood powder. The functional groups on the surface of wood charcoals carbonized at 300 and $400^{\circ}C$ were considered to be acidic groups like Lactone, Lactol, Carboxylic acid, Carboxylic anhydride, whereas Pyrone types could be the major functional groups for the wood charcoals carbonized between 500 and $900^{\circ}C$.

탄화온도에 따른 목탄의 pH, 원소함량비와 목탄 표면의 FT-IR 변화를 분석하기 위하여 잣나무 목탄이 사용되었다. 300, $400^{\circ}C$의 탄화온도에서 제조된 잣나무 목탄의 pH는 각각 5.27, 6.80로 측정된 반면, $500{\sim}900^{\circ}C$에서 제조된 시료의 pH는 크게 높아져 9.25~10.35로 나타났다. 탄화 온도의 차이에 따른 목탄의 원소 조성비 변화에 있어서는, 고온 탄화 목탄일수록 C 함유율이 높아지고 상대적으로 O, H의 함유율은 낮아졌다. 가장 큰 원소 조성비 변화 폭은 400와 $500^{\circ}C$의 탄화 온도에서 측정되었다. 300, $400^{\circ}C$에서 제조된 목탄의 C, O, H 원소함량비는 각긱 67.7, 28.9, 3.0%와 72.2, 24.9, 2.5%로 측정된 반면, $500{\sim}900^{\circ}C$ 사이에서 제조된 목탄의 C, O, H 함량비는 각각 83.3~90.5%, 13.6~9.0%, 2.7~0.3% 사이로 나타났다. FT-IR에 의한 목탄 표면 관능기 분석은 탄화 전 목분과 각각 $300{\sim}900^{\circ}C$ 사이의 온도에서 제조된 목탄의 IR-스펙트럼 비교로 이루어졌다. 300와 $400^{\circ}C$에서 탄화된 목탄의 표면에는 Lactone, Lactol, Carboxylic acid, Carboxylic anhydride 등의 산성 관능기들을 많이 포함하는 것으로 유추되는 반면, $500^{\circ}C$ 이상의 온도에서 탄화된 목탄의 경우에는 Pyrone 계토의 관능기를 많이 포함하는 것으로 판단된다.

Keywords

References

  1. 조태수, 안병준, 최돈하. 2005. 탄화온도 차이에 의한 목질탄화물의 흡착성 변화. 목재공학 33(3):45-52
  2. 조태수, 이오규, 한병준, 최준원. 2006. 국산수종으로 탄화한 목탄의 물성 및 흡착성. 임산에너지 25(1):9-17
  3. 황병호, 윤병호, 조남석, 이종윤. 최신 목재화학. 2005. 선진문화사. p. 12
  4. Beck, N. V., S. E. Meech, P. R. Narman, and L. A. Pears. 2002. Characterization of surface oxides on carbon and their influence on dynamic adsorption Carbon 40: 531-540 https://doi.org/10.1016/S0008-6223(01)00144-0
  5. Boehm, H. P. 1994. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32:759-769 https://doi.org/10.1016/0008-6223(94)90031-0
  6. Boehm, H. P. 2002. Surface oxides on carbon and their analysis: a critical assessment. Carbon 40:145-149 https://doi.org/10.1016/S0008-6223(01)00165-8
  7. Christner, L. G. and P. L. Walker, Jr. 1993. Molecular sieve character of carbons derived from cellulosic precursors. Carbon 31: 1149-1158 https://doi.org/10.1016/0008-6223(93)90068-L
  8. Derbyshire, Frank, M. Jagtoyen, and M. Thwaites. 1995. 'Activated Carbons-Production and Application', Chapter 8. In 'Porosity in Carbons: Characterization and Applications', Patrick J. W. (ed.) Edward Arnold, London
  9. Gomez-Serrano V., J. Pastor-Villegas, A. Prez-Florindo, C. Duran-Valle, and C. Valenzuela-Calahorro. 1996. FT-IR study of rockrose and of char and activated carbon. J. Anal. Appl. Pyrolysis 36: 71-80 https://doi.org/10.1016/0165-2370(95)00921-3
  10. McGinnes, E. A.. Jr., S. A. Kandeel, and P. S. Szopa. 1971. Some structural changes observed in the transformation of wood into charcoal. Wood Fiber 3: 77-83
  11. Moreno-Castilla, C., M. V. Lopez-Ramon, and F. Carrasco-Marin. 2000. Changes in surface chemistry of activated caebons by wet oxidation. Carbon 38: 1995-2001 https://doi.org/10.1016/S0008-6223(00)00048-8
  12. Morrison, R. T. and R. N. Boyd. 1992. Organic Chemistry. 6th ed., Prentice Hall, Inc., New Jersey
  13. Pastor-Villegas, J., C.J. Duran-Valle, C. ValenzuelaCalahorro, and V. Gomez-Serrano. 1998. Organic chemical structure and structural shrinnkage of chars prepared from rockrose. Carbon 36:1251-1256 https://doi.org/10.1016/S0008-6223(97)00200-5
  14. Pastor-Villegas, J, C. Valenzuela-Calahorro, A. Bernalte-Garcia, and V. Gomez-Serrano. 1993. Characterization study of char and activated carbon prepared from raw and extracted rockrose, Carbon 31: 1061-1069 https://doi.org/10.1016/0008-6223(93)90057-H
  15. Silverstein R. T. and F. X. Wehster. 1998. Spectrometric Identification of Organic Compounds. 6th ed., John Wiley & Sons, Inc., New York
  16. Sjostrom, E. 1993. Wood Chemistry: Fundamentals and Applications, 2nd ed. Academic Press, San Diego. p. 234
  17. Yue, Z. R, W. Jiang, L. Wang, S. D. Gardner, and C. U. Pittman Jr. 1999. Surface characterization of electrochemically oxidized carbon fibers. Carbon 37: 1785-1796 https://doi.org/10.1016/S0008-6223(99)00047-0