Biomass Estimation of Gwangneung Catchment Area with Landsat ETM+ Image

  • Chun, Jung Hwa (Dept. of Forest Environment, Korea Forest Research Institute) ;
  • Lim, Jong-Hwan (Dept. of Forest Environment, Korea Forest Research Institute) ;
  • Lee, Don Koo (Dept. of Forest Sciences, Seoul National University)
  • Received : 2007.08.21
  • Accepted : 2007.10.10
  • Published : 2007.10.31

Abstract

Spatial information on forest biomass is an important factor to evaluate the capability of forest as a carbon sequestrator and is a core independent variable required to drive models which describe ecological processes such as carbon budget, hydrological budget, and energy flow. The objective of this study is to understand the relationship between satellite image and field data, and to quantitatively estimate and map the spatial distribution of forest biomass. Landsat Enhanced Thematic Mapper (ETM+) derived vegetation indices and field survey data were applied to estimate the biomass distribution of mountainous forest located in Gwangneung Experimental Forest (230 ha). Field survey data collected from the ground plots were used as the dependent variable, forest biomass, while satellite image reflectance data (Band 1~5 and Band 7), Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and RVI (Ratio Vegetation Index) were used as the independent variables. The mean and total biomass of Gwangneung catchment area were estimated to be about 229.5 ton/ha and $52.8{\times}10^3$ tons respectively. Regression analysis revealed significant relationships between the measured biomass and Landsat derived variables in both of deciduous forest ($R^2=0.76$, P < 0.05) and coniferous forest ($R^2=0.75$, P < 0.05). However, there still exist many uncertainties in the estimation of forest ecosystem parameters based on vegetation remote sensing. Developing remote sensing techniques with adequate filed survey data over a long period are expected to increase the estimation accuracy of spatial information of the forest ecosystem.

Keywords

References

  1. Ardo, J. 1992. Volume quantification of coniferous forest compartments using spectral radiance record by Landsat Thematic Mapper. International Journal of Remote Sensing 13: 1779-1786 https://doi.org/10.1080/01431169208904227
  2. Berk, A., Bernstein, L.S., Anderson, G.P., Acharya, P.K., Robertson, D.C., Chetwynd, J.H., and Adler-Golden, S.M. 1998. MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote Sensing of Environmet 65: 367-375 https://doi.org/10.1016/S0034-4257(98)00045-5
  3. Chavez, P.S., Jr. 1996. Image-based atmospheric corrections-revisited and revised. Photogrammetric Engineering and Remote Sensing 62(9): 1052-1036
  4. Franklin, J., Hiernaux, and P.H. Y. 1991. Estimating foliage and woody biomass in Sahelian and Sudanian woodlands using a remote sensing model. International Journal of Remote Sensing 12(6): 1387-1404 https://doi.org/10.1080/01431169108929732
  5. Gemmell, F. M. 2000. Testing the utility of multi-angle spectral data for reducing the effects of background spectral variations in forest reflectance model inversion. Remote Sensing of Environment 72: 46-63 https://doi.org/10.1016/S0034-4257(99)00091-7
  6. Hese, S., Lucht, W., Schmullius, C., Barnsley, M., Dubayah, R., Knorr, D., Neumann, K., Riedel, T. and Schroter, K. 2005. Global biomass mapping for an improved understanding of the $CO_2$ balance-the Earth observation mission Carbon-3D. Remote Sensing of Environment 94: 94-104 https://doi.org/10.1016/j.rse.2004.09.006
  7. Lim, J. H., Shin, J. H., Jin, G. Z., Chun, J. H. and Oh, J. S. 2003. Forest stand structure, site characteristics and carbon budget of Kwangneung Natural Forest in Korea. Korea Journal of Agricultural and Forest Meteorology 5(2): 101-109
  8. Lee, N. J. and Nakane, K. 1996. Forest vegetation classification and biomass estimation based on Landsat-TM data in a mountainous region of west Japan. The use of remote sensing in the modeling of forest productivity: 159-171
  9. Li, X. and Strahler, A. H. 1985. Geometric-Optical Modeling of a Conifer Forest Canopy. IEEE Transactions on Geoscience and Remote Sensing 46(12): 1563-1573
  10. Lu, D., Mausel, P., Brondizio, E., and Moran, E. 2002, Assessment of atmospheric correction methods for Landsat TM data applicable to Amazon basin LBA reseach. International Journal of Remote Sensing 23: 2651-2671 https://doi.org/10.1080/01431160110109642
  11. Lu, D. 2005. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. International Journal of Remote Sensing 26(12): 2509-2525 https://doi.org/10.1080/01431160500142145
  12. Markham, B. L. and Barker, J. L. 1986. Landsat MSSand TM post-calibration dynamic ranges, Exoatomospheric reflectances and at-satellite temperatures. EOSAT Technical Notes, August 1986
  13. Massimo, V. D. Reeder, and Frazzi, E. 2002. An Empirical topographic normalization method for forest TM data, Geoscience and Remote Sensing Symposium, 2002. IGARSS '02. Proceedings. IEEE International Vol. 4: 2091-2093
  14. McDonald, E.R., Wu, X., Caccetta. P., and Campbell, N. 2000. Illumination correction of Landsat TM data in South East NSW, Proceeding of the tenth Australasian Remote Sensing and Photogrammetry Conference, Adelaide, Australia, August 21-25, 2000
  15. Meyer, P., K.I. Itten, T. Kellenberger, Sandmeier, S.T. 1993. Radiometric corrections of topographically induced effects on Landsat TM data in an alpine environment. ISPRS Journal of photogrammetry and Remote Sensing 48(4): 17-28 https://doi.org/10.1016/0924-2716(93)90028-L
  16. Phua, M.-H. and Hideki Saito 2003. Estimation of a mountainous tropical forest using Landsat TM data. Can. J. Remote Sensing 29(4): 429-440 https://doi.org/10.5589/m03-005
  17. Nelson, R.F., Kimes, D.S., Salas, W.A., and Routhier, M. 2000. Secondary forest age and tropical forest biomass estimation using Thematic Mapper imagery. Bioscience 50: 419-431 https://doi.org/10.1641/0006-3568(2000)050[0419:SFAATF]2.0.CO;2
  18. Pellikka, P. 1996. Illumination compensation for aerial video images to increase land cover classification in mountains. Can. J. Remote Sensing 22: 368-381 https://doi.org/10.1080/07038992.1996.10874661
  19. Plummer, S.E. 1988. Exploring the relationships between leaf nitrogen content, biomass and the near-infrared/red reflectance ratio. International Journal of Remote Sensing 9(1): 177-183 https://doi.org/10.1080/01431168808954845
  20. Richter, R. 2002. ATCOR2 Version 2.0 User Manual, Wessling, Germany
  21. Sader, S.A., Waide, R.B., Lawrence, W.T., and Joyce, A.T. 1989. Tropical forest biomass and successional age class relationships to a vegetation index derived from Landsat- TM data. Remote Sensing of Environment 28: 143-156 https://doi.org/10.1016/0034-4257(89)90112-0
  22. Sellers, P.J. 1985. Canopy reflectance, photosynthesis and transpiration. International Journal of Remote Sensing 6(8): 1335-1372 https://doi.org/10.1080/01431168508948283
  23. Senoo, T., Iwanami, E., Tanaka, S., and Sugimura, T. 1983. Forest type classification in broad mountainous area by two seasonal Landsat-MSS data after ratioing. Remote Sensing Society of Japan 3: 55-64
  24. mith, J.A., T.L. Lin, and Ranson, K.J. 1980. The Lambertain Assumption and Landsat Data. Photogrammetric Engineering and Remote Sensing 46(9): 1183-1189
  25. Steven, M. 1987. Ground truth: An underview. International Journal of Remote Sensing 8(7): 1033-1038 https://doi.org/10.1080/01431168708954745
  26. Teillet, P.M., Guindon, B. and Goodenough, D.G. 1982. On the Slope-Aspect Correction of Multispectral Scanner Data. Can. J. Remote Sensing 8(2): 84-106 https://doi.org/10.1080/07038992.1982.10855028
  27. Trotter, C.M., Dymond, J.R. and Goulding, C.J. 1997. Estimation of timber volume in a coniferous plantation forest using Landsat TM. International Journal of Remote Sensing 18: 2209-2223 https://doi.org/10.1080/014311697217846
  28. Vermote, E.F., Tame, D., Deuze, J.L., Herman, M., and Mocrette, J.-J. 1997. Second Simulation of Satellites Signal in the Solar Spectrum, 6S: An overview. IEEE Transaction on Geoscience and Remote Sensing 35(3): 675-686 https://doi.org/10.1109/36.581987
  29. Woodcock, C.E., Collins, J.B., Jakabhazy, V.D., Li, X., Macomber, S., and Wu, Y. 1997. Inversion of the Li-Strahler canopy reflectance model for mapping forest structure. IEEE Transaction on Geoscience and Remote Sensing 35: 405-414 https://doi.org/10.1109/36.563279
  30. Wu, Y and Strahler, A.H. 1994. Remote estimation of crown size, stand density, and biomass on the Oregon transect. Ecological Applications 42: 299-312
  31. Yoshio, A., Tsuyuki, S. Kodani, E., and Takao, G. 2004. Potential of Woody Carbon Stock Estimation Using High Spatial Resolution Imagery: A Case Study of Spruce Stands. Global Environmental Change in the Ocean and on Land, Eds., M. Shiyomi et al. 425-440
  32. Zheng, D., Rademacher, J., Chen, J., Crow, T., Bresee, M.J., le Moine, and Ryu, S. 2004. Estimating aboveground biomass using Landsat 7 ETM + data across a managed landscape in northern Wisconsin USA. Remote Sensing of Environment 93: 402-411 https://doi.org/10.1016/j.rse.2004.08.008