Abstract
We studied the bottom morphology and sedimentary environments of the Masan Bay using high-resolution Chirp seismic profiles and sediments data. According to deep-drilled core samples (up to 20 m thick) penetrated into the weathered rock basement, the sediments consist largely of three sediment types: the lower sandy gravel facies (Unit I) of 1-4 m in thickness, the middle sandy mud and/or muddy sand facies(Unit II) of 1-2 m thick and the upper mudfacies (Unit III) of over 10 m in thickness. The sedimentary column above the acoustic basement can be divided into two major sequences by a relatively strong mid-reflector, which show the lower sedimentary sequenc e(T) with parallel to subparallel internal reflectors and the upper sedimentary sequence(H) with free acoustic patterns. Acoustic basement, the lower sedimentary sequence (T), and the upper sequence (H) are well correlated with poorly sorted massive sandy gravels (Unit I), the sand/mud-mixed sediment (Unit II), and the muddy facies(Unit III), respectively. The acoustic facies and sediment data suggest that the Masan bay is one of the most typical semi-enclosed coastal embayments developed during the Holocene sea-level changes. The area of the Masan Bay reduced from about $19\;km^2$ in 1964 to about $13\;km^2$ in 2005 by reclamation, and its bottom morphology changed as a result of dredging of about $2{\times}10^7\;m^3$.