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Abstract. This paper proposes a new non-homogeneous Poisson pro-
cess software reliability growth model based on the coverage information.
The new model incorporates the coverage information in the fault detec-
tion process by assuming that only the faults in the covered constructs
are detectable. Since the coverage growth behavior depends on the test-
ing strategy, the fault detection process is first modeled for the general
testing strategy and then realized for the uniform testing. Finally the
model for the uniform testing is empirically evaluated by applying it to
real data sets.

Key Words : coverage, fault detection rate function, software reliability
growth model, testing-domain function, uniform testing.

1. INTRODUCTION

Recently software is becoming an integral part of computer systems. Since fail-
ures of a software system can cause severe consequences, reliability of a software
system is a primary concern for both software developers and software users. Test-
ing is a key activity for detecting and removing faults and improving reliability of
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a software system. In theory, it is impossible to detect and remove all the faults
within a reasonable amount of testing time. Therefore developers usually determine
when to stop testing and release the software based on the estimates of reliability
measures such as the initial fault content, the time to next failure, and the number
of remaining faults. Many software reliability growth models (SRGM’s) have been
proposed and applied in practice to estimate such software reliability measures.

One of the most popular SRGM’s is the class of nonhomogeneous Poisson pro-
cess (NHPP) SRGM’s. An NHPP SRGM expresses the fault detection/removal
process during testing as a stochastic process. Let N(t) denote the number of faults
detected up to t testing time. Assuming that the detected faults are removed im-
mediately, N(t) represents the fault detection/removal process. An NHPP SRGM
assumes that N(t) follows a Poisson distribution with mean value function (MVF)
m(t). An NHPP SRGM is thus characterized by its MVF. MVF’s of the existing
NHPP SRGM’s are usually derived from the assumption that failure intensity is
proportional to the number of faults remaining in the software under testing. Thus
Yamada and Osaki (1985) presented a framework for the NHPP SRGM’s as the
following differential equation:

dm(t)
dt

where a is the initial fault content and b(t) is the fault detection rate function. The
fault detection rate function expresses the fault detection rate per fault at testing
time t. Recently the NHPP SRGM’s have been generalized so that the imperfect
debugging is incorporated in the model. Pham and Nordmann (1997) refers to such
NHPP SRGM’s as the general NHPP SRGM’s. The framework for the general
NHPP SRGM'’s is represented as

= b(t) [a — m(t)] (1.1)

dm(t)

T b(t) [a(t) — m(?)] , (1.2)

where a(t) is the fault content function. Various a(t)’s and b(t)’s reflect various
assumptions on the software testing process. A constant a(t) implies the perfect
debugging; an increasing a(t) reflects the imperfect debugging. A constant b(t)
means that the failure intensity is proportional to the number of faults remaining
in the software system; an increasing b(t) implies that the fault detection rate per
fault varies due to, for example, the learning phenomenon during testing. Several
combinations of a(t) and b(t) have been proposed and the corresponding general
NHPP SRGM'’s have been compared with the existing NHPP SRGM’s by Pham
and Nordmann (1997), Pham and Zhang (1997), Pham et al (1999) and Pham
(2003).

There is another approach to the development of NHPP SRGM’s. The approach
takes advantage of coverage information. Denote by M the set of all the constructs of
the software under testing. Constructs may be statements, blocks, p-uses, or c-uses
depending on the coverage metric under consideration. Let |M| be the cardinality of
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set M. As the testing progresses, the cumulative numbers of executed test cases and
covered constructs increase. We represent the set of constructs covered up to testing
time ¢ by M,(t). Then the coverage at testing time ¢ is defined as c(t) = |M,(t)||M |~}
and referred to as the coverage growth function. Only a few coverage-based SRGM’s
have appeared in Piwowarski et al (1993), Gokhale et al (1996) and Malaiya et al
(2002). Piwowarski, et al (1993) proposed the first coverage-based SRGM, which
has the MVF m(t) = ac(t), where c(t) = 1—exp (1 — p|M|~'t) and p is the expected
number of constructs executed by a test case. Gokhale et al (1996) suggested an
enhanced NHPP SRGM, which is represented by

dm(t) de(t)

Appropriate b(t) and c(t) are to be specified for application of the enhanced NHPP
SRGM. The logarithmic-exponential coverage model of Malaiya et al (2002) was
derived under the assumption that both ¢(t) and m(t) follow the logarithmic Poisson
execution time model.

All the faults detected up to testing time ¢ are from M,(t), not from M,(t) =
M — M.(t). It should be noted that coverage of a construct does not always reveal
all the faults in that construct. This implies that constructs in M.(t) may possess
faults. An additional test case generated at testing time ¢ according to a testing
strategy generally executes some constructs in M,(t) and some constructs in Mc(t).
That is, repeated construct execution occurs during testing. Therefore faults newly
detected by the additional test cases may be located at either M(t) or M(t). The
coverage-based NHPP SRGM’s mentioned above do not explicitely take location
of the newly detected faults into account. The testing-domain (T-D) dependent
NHPP SRGM of Yamada and Fujiwara (2001) and Fujiwara and Yamada (2002),

represented by

20— b(1) ) - m0)] (1.4

is the only NHPP SRGM taking account of the location of newly detected faults.
Here, the T-D function u(t) denotes the number of all the faults (detected and
undetected) in M.(t). The key concept in the T-D dependent NHPP SRGM is the
T-D function, which reflects the fact that only the faults in M.(t) are detectable.
Yamada and Fujiwara (2001) and Fujiwara and Yamada (2002) model the time-
dependent growth behavior of u(t) under the assumption that the growth rate of u(t)
is proportional to the number of faults remaining in M.(t). However, this assumption
does not represent the real testing environment well encugh. The growth behavior
of u(t) depends on the growth behavior of M.(t). The growth behavior of M,(¢) in
turn depends on the testing strategy. That is, without explicitely considering the
testing strategy, the growth behavior of u(t) can not be adequately described.

The primary objective of this paper is to develop the general T-D dependent
NHPP SRGM that explicitely reflects the testing strategy. First the fault detection
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process in a general testing environment is modeled as a differential equation for
MVF in Section 2. Then the general T-D dependent NHPP SRGM for the uniform
testing profile is obtained in Section 3 by realizing the differential equation for the
uniform testing profile. For practical application of the general T-D dependent
NHPP SRGM, the fault detection rate function should be provided. Section 4 derives
MVF’s of the general T-D dependent NHPP SRGM for several well-known fault
detection rate funations. Section 5 performs empirical evaluation of the proposed
model by applying it to two real data sets. Finally conclusions are presented in
Section 6.

2. MODELING FAULT DETECTION PROCESS FOR GENERAL
TESTING STRATEGY

As mentioned in Section 1, coverage of a construct does not guarantee that the
construct is fault free. Thus M.(t) may contain some faults. Such imperfect fault
detection phenomenon is reflected in the fault detection rate function b(t). The faults
in M,(t) can be detected later when some constructs in M,(t) are executed again.
Suppose that additional testing is performed at testing time ¢ during dt. In general,
the additional testing will execute some constructs in M,(t) and some constructs in
M,(t). Execution of constructs in M(t) expands M,(t) and consequently increases
both c(t) and u(t). The constructs which were in M,.(t) at time ¢ and covered
. during dt constitutes the increment of M.(t), which is denoted by dM.(t). The set
of constructs which were in M, (t) at time ¢ and re-executed during dt is denoted
by RM.(t). Similarly we denote the corresponding increments of m(t), u(t) and
c(t) caused by the additional testing during dt by respectively dm(t), du(t) and
de(t). Tt is easily verified that u(t) = ny (Mc(t)), du(t) = nr (dMc(t)), and de(t) =
|dM(t)||M |7}, where nr (-) denote the total number of (detected and undetected)
faults in a set of constructs. The increment dm(t) is the sum of the number of faults
detected in dM,(t) and the number of faults detected in RM,(t). Therefore,

dm(t) = b(t)ng(RMc(t)) + b(t) nT (dM,(t))
= b(t)ng (RML(t)) + b(t) du(t) , (2.1)

where npg (-) is the number of (undetected) faults remaining in a set of constructs.
Henceforth we model the fault detection process based on the following assump-
tions:

1. The a initial faults are uniformly distributed over M.
2. The faults remaining in M,(t) are uniformly distributed over M,(t).

3. The detected faults are immediately removed without introduction of new
faults.
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The total number of (detected and undetected) faults in the software, a, remains
constant throughout testing due to Assumption 3. Assumption 1 implies that u(t) is
obtained as the product of the initial fault density per construct in M.(t) and |M.(t)]
and that du(t) is obtained as the product of the fault density per construct in M,(t)
and |dM,(t)|. Since both the fault density per construct in M at the beginning of
testing and the fault density per construct in Mc(t) are a|M|~?,

u(t) = o M| Mc(t)] = ac(t) (2.2)

and

du(t) = a|M|HdM.(t)| = adc(t). (2.3)

It is worthy of note that the T-D function u(t) is completely determined by the
coverge growth function ¢(t) under Assumptions 1 and 3. Similarly, due to Assump-
tion 2, np (RM,.(t)) is obtained as the product of the fault density per construct in
RM,(t) and |RM,(t)|. Since the fault density per construct in RM.(t) is just the
fault density per construct in M.(t) and ng (M(t)) = [u(t) — m(t)],

u(t) — m(t) __ac(t) — m(t)
g MO T

Substituting Eqs. (??) and (??) into Eq. (??) and dividing both sides of Eq. (?7)
by dt, we have the following differential equation:

np (RMc(t)) = |RM(¢)]. (2.4)

dm(t) _ ppy2clt) = m(t) [RMB)] | delt) (2.5)

dt | M|c(t) dt dt
Hereafter, the NHPP SRGM whose MVF is represented by Eq. (?7) is referred to
as the general T-D dependent NHPP SRGM. Apparently the general T-D dependent
NHPP SRGM is characterized by the time-dependent behavior of RM,(t) and c(t).
Their behavior is determined by the testing strategy. The next section realizes the
general T-D dependent NHPP SRGM for the testing strategy employing the uniform
testing profile.

b(t)

3. GENERAL T-D DEPENDENT NHPP SRGM FOR UNIFORM
TESTING

The general T-D dependent NHPP SRGM derived in the previous section is not
yet applicable in practice. Because Eq. (?7) can not be solved without specifying
the testing strategy. For example, consider the resource-constrained non-operational
testing of Rivers and Vouk (1998), which does not allow the repeated execution of
constructs in Mc(t). Then |RM.(t)| = 9 and Eq. (?7?) is simplified to Eq. (?7). This
implies that the enhanced NHPP SRGM is equivalent to the general T-D dependent
NHPP SRGM for the testing strategy without repeated construct execution.
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In the remainder of this section we realize the general T-D dependent NHPP
SRGM for the uniform testing. Consider the following assumption:

4. All constructs in M are equally likely executable.

This assumption is referred to as the uniform testing profile assumption. The un-
form testing is a testing strategy in which test cases are generated according to the
uniform testing profile. One of important reliability measures is the number of faults
remaining in the software. When the primary objective of testing is to improve reli-
ability by removing as many faults as possible and/or the managemental decision on
when to stop testing is made based on the number of remaining faults, all the faults
in the software should be considered equally important. Then it is reasonable to
employ a testing profile distributing equal frequencies over all the constructs. Even
when the operational profile is not available, the uniform testing profile may be used
as a reasonable alternative.

Suppose additional testing is performed at ¢ during dt according to the uniform
testing profile. Then |RM,(t)|/|dM.(t)] is expected to be c(t) {1 — c(t)]™*. Since
ldM.(t)] = |M|dc(t), |RM.(t)] is thus expected to be |[M|c(t) [1 — c(t)] ™" de(t). Re-
placing |[RM,(t)| in Eq. (2?) with |M|c(t) [1 — c(t)] ™} de(t), Eq. (7?) is now written
as
dm(t) a — m(t) de(t)

o - WTTo ar (3.1)

Next we derive the coverage growth function ¢(t) for the uniform testing strategy.
Let p denote the expected number of constructs executed during a unit testing time.
Then the number of constructs newly covered during dt, |dM.(t)|, is expected to
be p[l — c(t)]dt. Since dc(t) = |dM.(t)||M|~}, the coverage growth behavior is
represented by

de(t)
dt

Soving this differential equation with initial condition ¢(t) = 0, the coverage growth
function is obtained as

= ﬁ [1-c(t)] . (3.2)

c(t)=1—exp (-—ﬁ;——ﬁ) . (3.3)

Actually this coverage growth function is identical with the coverage growth function
of Piwowarcki, et al (1993). Substituting Eq. (?7) into Eq. (?7), we now have

dm(t) _ p

dt  |M|
Egs. (7?) and (??7) assume that all the faults remaining in the software are
detectable during dt. Since p* = p|M|~! is the average proportion of constructs

b(t) [a — m(t)] . (3.4)
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covered during a unit testing time, p* [@ — m(t)] denotes the average number of faults
in the constructs covered during a unit testing time. Therefore, Eq. (??) implies
that only the faults remaining in the constructs covered during dt are exposed to
the detection activity. Evidently Eq. (?7) represents the fault detection process
more reasonably than Egs. (?7) and (?7). The MVF of the general T-D dependent
NHPP SRGM for the uniform testing strategy is then obtained as

m(t)=a [1 — exp (—p" /Ot b(T)dT)] . (3.5)

4. FAULT DETECTION RATE FUNCTIONS AND
CORRESPONDING MVF’s

The MVF of the general T-D dependent NHPP SRGM for the uniform testing
is not yet determined. The MVF is completely determined when the fault detection
rate function is specified. Since the fault detection rate function reflects the learning
phenomenon occurring during testing, the traditional learning curves may be em-
ployed as the fault detection rate function. Alternatively we can choose an appro-
priate fault detection rate function from the available fault detection rate functions
appeared in the literature, e.g., Goel and Okumoto (1979), Yamada et al (1986),
Yamada et al (1992), Yamada et al (1993), Pham and Nordmann (1997), Pham and
Zhang (1997), Pham et al (1999), and Pham (2003). The currently available fault
detection rate functions and corresponding MVF’s for the general T-D dependent
NHPP SRGM are tabulated in Table 1. Comparison of Eq. (??) and Eq. (??) indi-
cates that the general T-D dependent NHPP SRGM for the uniform testing can be
regarded as the NHPP SRGM with fault detection rate function p*b(t). Furthermore,
if p*b(¢) has the same functional form with b(t), the general T-D dependent NHPP
SRGM for the uniform testing is equivalent to the NHPP SRGM. The fault detection
rate functions in Table 4.1 are thus classified into two categories: scale-variant fault
detection rate function and scale-invariant fault detection rate function. If p*b(t)
has the same functional form with b(¢), b(t) is said to be scale-invariant. Otherwise,
b(t) is said to be scale-variant. That is, if scalar multiplication does not alter the
functional form of b(t), b(t) is scale-invariant. If b(t) is scale-invariant, we can simply
regard p*b(t) as b(t) without loss of generality. Consequently the MVF of the gen-
eral T-D dependent NHPP SRGM with scale-invariant b(t) for the uniform testing
is equal to that of the NHPP SRGM with the same fault detection rate function. It
is not difficult to verify that the MVF’s corresponding to the first 4 scale-invariant
fault detection rate functions in Table 4.1, denoted by m;(t) for i = 1,2,3,4, are
identical with the MVF’s of the well-known NHPP SRGM’s proposed in Goel and
Okumoto (1979), Yamada et al (1986) and Yamada et al (1993).

Next we consider the last 3 fault detection rate functions in Table 4.1. Suppose
that the fault rate function is given by
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5
b(t) = ——ie——no . 4.1
®) 1+ aexp(—0t) (4.1)
Since this fault detection rate function is scale-invariant, p* can be simply ignored
according to the discussion of the previous paragraph. The corresponding MVF of
the general T-D dependent NHPP SRGM for the uniform testing is thus obtained
as

_ (1+a)exp(—ﬁt)]7/ﬁ
ms(t) = [1 [ T+ o exp (—51) . (4.2)
Now consider the case where the fault detection rate function is
b(t) B (4.3)

1y aexp (—~ft)

When multiplied by p*, p*b(t) is transformed into Eq. (??) by letting v = p*g.
Therefore, the MVF for the fault detection rate function (?7?) is also given by Eq.
(?77). If the fault detection rate function is

Bt
= — 4
0= (44)
p*b(t) can be written as
b(t) = = (45)
P T 148t ’

where v = p*3%. The corresponding MVF is then obtained as

m(t) = a {1~ (1+ 6t)"/% exp (—11/5)] . (46)

Table 4.1. Fault detection rate functions and corresponding MVF’s.

Category  Fault Detection Rate Function MVF

b(t) = 8 mi(t) = a[l — exp (—ft)]
Scale- b(t) = afexp (—Bt) me(t) =all —exp[~oa[l —exp (—L8)]])
invariant  b(t) = aftexp (—5t2/2) ma(t) =a [1 — exp [—a [1 — exp (—ﬁtz)“]
b(t) = BT Lexp (=AtY)  ma(t) = a [l — exp [~a[l — exp (~BE)]

b(t) = i¥a exp(—8i} 14+ o exp{—3t)

ms{t)=all— [&M]Wq

Scale- b(t) = 1?:[;: melt) =a r1 —(1+ ﬂt)’Y/ﬁz exp (—'Yt/ﬂ)]

) a — 14-ax) exp{~ Bt 'Y/B‘
variant b(t) = TYe (=BT ms(t)=a |l - T o exp(~BE)
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5. APPLICATION TO REAL DATA SETS

In this section we evaluate the practical applicability of the general T-D depen-
dent NHPP SRGM for the uniform testing. Two data sets are considered for the
practical applicability evaluation. The first data set DS1, reported in Tohma et al
(1991), is the number of failures recorded by day from testing a real-time monitor
and control system. A number of currently available NHPP SRGM’s are applied
to DS1 and compared in terms of two performance measures, SSE (sum of squared
errors) and AIC (Akaike information criterion). The lower are the SSE and AIC
values, the better the model performs. Zhang and Pham (2000) chooses the P-Z
model as the best model among the NHPP models applied to DS1. The general
T-D dependent NHPP SRGM’s whose MVF'’s are m;(t) for i = 4,5,6 and the T-D
dependent NHPP SRGM with skill-factor of Yamada and Fujiwara (2001) are now
applied to DS1. The values of SSE and AIC for the models are computed and pre-
sented in Table 5.1. The T-D dependent NHPP SRGM with skill-factor is the best
for DS1 with respect to AIC, while the general T-D dependent NHPP SRGM with
MVF mgs(t) is the best with respect to SSE. We may choose the general T-D depen-
dent NHPP SRGM with MVF my(t) because its SSE and AIC values are close to
the corresponding best values. The maximum likelihood estimates of the parameters
in the general T-D dependent NHPP SRGM with MVF ms(t) are computed and
presented in Table 5.2. The estimated MVF is depicted in Figure 5.1.

Table 5.1. Values of SSE and AIC of some selected models for DS1.

general T-D dependent NHPP

with MVF T-D dependent NHPP  P-Z model

my(t) ms(t) me(t) with skill-factor
SSE  33062.2900 31546.4747 37424.8166 38012.4546 59549
AIC 640.4559 643.5667 646.0102 638.4159 890.62

The second data set DS2, reported in Fujiwara and Yamada (2002), was observed
in the testing phase of a software of which size is 197.2x10%. DS2 consists of by the
number of faults detected weekly. It was shown that the T-D dependent NHPP
SRGM with skill-factor worked better than other conventional models for DS2. The
general T-D dependent NHPP SRGM with MVF ms5(t) is now applied to DS2. The
values of SSE and AIC for the general T-D dependent NHPP SRGM with MVF
ms(t) and the T-D dependent NHPP SRGM with skill-factor are given in Table 5.3
for the sake of comparison. The maximum likelihood estimates of the parameters
in the general T-D dependent NHPP SRGM with MVF ms(t) are also presented in
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Table 5.2. Maximum likelihood estimates of the parameters in the general T-D
dependent NHPP SRGM with MVF ms(t) for DS1 and DS2.

Data Set
parameter DS1 DS2
a 481.7499 298.2275
o 4.3958  12.8596
J¢] 0.0634 0.2807
v 0.0766 0.3334
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Figure 5.1. Plots of the cumulative number of detected faults and the estimated
ms(t). (DS1)
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Table 5.2. The fitted MVF is plotted in Figure 5.2. Judging from Table 5.3 and
Figure 5.2, it is evident that the general T-D dependent NHPP SRGM with MVF
mg(t) fits to DS2 significantly better than the T-D dependent NHPP SRGM with
skill-factor.
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Figure 5.2. Plots of the cumulative number of detected faults and the estimated
ms(t). (DS2)

6. CONCLUSIONS

The T-D dependent NHPP SRGM assumes that only the faults in the covered
constructs are detectable. Since the coverage growth depends on the testing strategy,
the T-D dependent NHPP SRGM is generalized so that the coverage growth in the
general testing strategy is incorporated. We first model the fault detection process
under the general testing strategy in which the repeated execution of constructs is
allowed. We then realize the model for the uniform testing. Finally it is shown
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Table 5.3. Values of SSE and AIC of some selected models for DS2.

general T-D dependent NHPP T-D dependent NHPP

with MVF ms(t) with skill-factor
SSE 402.9407 1645.2275
AIC 121.9217 133.508

empirically that the general T-D dependent NHPP SRGM works well in comparison
with the existing models.

There are several points that need further research. The general T-D dependent
NHPP SRGM proposed in this paper is developed under the perfect debugging as-
sumption. To make the proposed model realistic, we need to modify it to reflect
the imperfect debugging phenomenon. The general T-D dependent NHPP SRGM
has been realized only for the uniform testing. The uniform testing is just an ap-
proximation to the actual testing. The actual testing may be far different from the
uniform testing. Thus the effect of the discrepancy between the uniform testing and
the actual testing need to be evaluated. In addition, the general T-D dependent
NHPP SRGM is to be realized for testing strategies other than the uniform testing.
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