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Goodness-of-fit Test for Rayleigh Distribution
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Abstract. In this paper, we use the moments of order statistics de-
rived by Lieblein (1955) to develop the correlation goodness-of-fit test
for the Rayleigh distribution. In such we simulate the percentage points
of the test statistics for the one-parameter and two-parameter cases. In
addition, we calculate the power of the proposed tests based on some
alterative distributions. Finally, we apply the procedures developed in
the paper to some real data.
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1. INTRODUCTION

The two-parameter Rayleigh; Ray(f, o) distribution has its pdf as

flz)= ma—zeexp (_(ac_—éﬁ>,$29,a>0} (1.1)

202

where 6 and ¢ are the location and scale parameters, respectively.
The one-parameter pdf of the Rayleigh; Ray(0, o) distribution is given by

z z?
f(m)=‘0‘§eXP ~ 552 ,2>0, 0 >0, (1.2)

while the standard Rayleigh; Ray(0,1) is given by

flz) =zexp (—%2) , x>0 (1.3)
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Rayleigh distributions given in (1.1) - (1.3) are special cases of the Weibull distribu-
tions with shape parameter equal to 2, and consequently with failure rate function
increasing with time at constant rate.

Dyer and Whisenand (1973) have obtained the best linear unbiased estimates
of the scale parameter of the Rayleigh distribution given in (1.2) based on small
sample size, while Adatia (1995) has repeated the same technique based on fairly
large censored samples. Raqab and Madi (2002) have predicated the total time on
test using doubly censored Rayleigh data.

Rayleigh distribution has a wide range of applications including life testing;
Polovko (1968), communication engineering; Dyer and Whisenand (1973) and Gross
and Clark (1975); clinical trials. Recently, many authors have discussed various
applications of the Rayleigh distribution, for example, Yamane (1998) has discussed
the applications of the Rayleigh to size selectivity of small prawn pots for the ori-
ental river prawn. Celik (2003 and 2004) has analyzed the wind speed data of
Iskenderun, Turkey based on the Rayleigh distribution while Akpinar and Akpimiar
(2004) have analyzed the the wing speed data from Agin-Elazig, Turkey by using the
Rayleigh distribution. Kuruoglu (2004) has shown that the amplitude distribution
of the complex wave fits a generalization of the Raleigh distribution. Also, he has
demonstrated that the amplitude distribution is a mixture of Rayleigh distributions.

Goodness-of-fit tests are very important techniques for data analysis in the sense
of check whether the given data fits the distributional assumptions of the statistical
model. A variety of goodness-of-tests are available in the literature and recently
there seems to be significant research on this topic, for more details, see, D’Agostino
and Stephens (1986) and Huber-Carol et al. (2002). Correlation coefficient test
is considered one of the easiest of such tests, that is because it is only needs spe-
cial tables introduce from Monte Carlo simulations. The correlation coefficient test
was introduced by Filliben (1975) for testing goodness-of-fit to the normal distribu-
tion and tables where updated later by Looney and Gulledge (1985). Among oth-
ers Kinnison (1985, 1989) used the correlation coefficient method to present tables
for testing goodness-of-fit to the extreme-value Type-I (Gumbel) and the extreme-
value distribution, respectively. Recently, Sultan (2001) has devolved the correlation
goodness-of-fit to the logarithmically-decreasing survival distribution. Baklizi (2005)
has suggested weighted Kolmogrove-Smirnov type test for grouped Rayleigh data.

Let X1.n € Xon < ... £ Xy be the order statistics from the Rayleigh distribu-
tion given in {1.3). Then, the pdf of the r-th order statistic is given by

fralz) = C’r:n{F(x)}’"l{l — F(2)}* " f(x), 0<z < o0, (1.4)

where Cp., = ﬁWn'nTrV For more details, see David (1981 and 2003) and Arnold,

Balakrishnan and Nagaraja (1992). Lieblein (1955) has shown that the first single
moments of the r-th order statistic from the Rayleigh distribution in (1.3) is given
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by

r 1—¢ _
Hr:n = ”(""/2)1/2( \ Z (n - Z)3/2 (T i 1)- (1.5)

In this paper, we use the single moments of the r—th order statistic given in (1.5) to
develop the goodness of fit tests for one- and two-parameter Rayleigh distributions.
In Section 2, we develop test for the one-parameter case, while in Section 3, we
develop test for the two-parameter case. In Section 4, we calculate the power of the
tests based on some different alternative distributions. In addition, we present some
simulated examples. In Section 5, we apply the proposed test for some real data.
Finally in Section 6, we draw a conclusion.

2. TEST FOR THE ONE-PARAMETER CASE

Let X1.n, Xom, ...y Xn—r.n denote a Type-1I right-censored sample from the distri-
bution in (1.2), and let Z;., = X;.n/0,1 = 1,2,...,n —r, be the corresponding order
statistics from the standard distribution in (1.3). Let us denote E(Z;.) by fin,
then F(X;.n) = oin,t = 1,2,...,n — r. The correlation-type goodness-of-fit test
in this case may be formed as

Hy : F is correct, that is X, Xo,..., X, have Ray(0, o) given in (1.2) versus,
H; : F is not correct, that is X1, Xy,..., Xy have another pdf,

and the statistic used to run the test is given by

n—r n—r n—r
= Z X’i:n[»"é:n/ Z Xan Z #?:n, (21)
i=1 i=1 i=1

this statistic represents the correlation between X;., and pn,,i = 1,2,...,n — 7.
By using the moments pin,i = 1,2,...,n — r given in (1.5), the statistic 7T} is
simulated through Monte Carlo method based on 10,001 runs. Table 2.1 represents
the percentage points of 71 for sample sizes n = 5, 10,15, 20, 25, 30 and different
censoring ratios p = == = 1.0,0.8,0.6.

As we can see from Table 2.1, the percentage points of T} increases as the sample
size increases as well as the significance level increases for censoring ratios p =
1.0,0.8,0.6.

3. TEST FOR THE TWO-PARAMETER CASE

Let X1.n, Xo:ny - - -, Xn—rin denote a Type-1I right-censored sample from the distribu-
tionin (1.1), and let Z; = Xiy1n— X1 and v = pig1m — iyt = 1,2,...,n—7—1,
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Table 2.1. Percentage Points of T3

p n 05% 1% 2%  25% 5% 10% 20% 30% 40% 50%

1.0 5 9189 .9325 .9454 .9490 .9603 .9695 .9778 9825 9856 .9881
10 9525 9590 .9662 9683 9741 .9800 .9853 .9881 .9901 .9918
15 .9640 .9697 9750 9764 9809 .9852 .9890 9911 .9925 .9937
20 9722 9761 9795 .9807 .9847 9880 .9911 .9928 9940 .9949
25 9752 9792 9835 .9844 9871 9901 .9926 9939 .9948 .9956
30 .9804 9826 .9856 .9866 .9891 .9914 9935 .9947 .9956 .9962

08 5 .9080 .9242 9411 9446 9578 9682 9776 .9825 .9861 .9888
10 .9516 .9598 9671 9692 .9756 .9814 9863 .9890 .9910 .9925
15 .9666 9723 9768 9784 .9826 .9862 .9900 .9919 .9933 .9944
20 .9748 9785 9825 9836 9867 .9894 .9921 .9936 .9947 .9956
25 .9801 9831 9856 .9865 .9890 9915 .9936 .9948 .9957 .9963
30 .9835 9859 9881 9889 9908 .9928 .9946 9957 .9964 .9969

06 5 .8916 9111 .9279 .9362 .9512 9644 .9752 9817 .9861 .9892
10 9355 .9494 9581 9614 .9694 9770 9838 9872 .9895 9914
15 9604 .9664 9718 9738 .9794 9839 9882 .9907 .9923 .9936
20 .9708 .9745 9786 .9799 .9840 9875 .9908 9925 .9939 .9949
25 9750 9789 9826 9836 .9864 9895 .9924 9939 .9950 .9958
30 .9791 .9819 9850 .9859 9885 9912 .9936 9949 .9958 .9964

where p;., be the corresponding moments of order statistics from the standard dis-
tribution given in (1.3). The correlation-type goodness-of-fit test in this case may
be formed as

Hg : F is correct, that is X7, X5,..., X, have Ray(6, o) given in (1.1) versus,
H, : F is not correct, that is X1, X3, ..., X, have another pdf,

and the statistic used to run the test is given by

n—r—1 n—r—1 n—r—1
L= @/ X %Y 4 (3.1)
i=1 i=1 i=1
this statistic represents the correlation between Z; and v;,i =1,2,...,n— 7.
Once again by using the moments p;n,i = 1,2,...,n — r given in (1.5), the

statistic Ty is simulated through Monte Carlo method based on 10,001 runs. Table
3.1 represents the percentage points of T» for sample sizes n = 5, 10, 15, 20, 25, 30
and different censoring ratios p.

From Table 2, we see that, the percentage points of T» increases as the sample

size increases as well as the significance level increases for censoring ratios p =
1.0,0.8,0.6.
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Table 3.1 Percentage Points of T;

p n 05% 1% 2% 25% 5% 10% 20% 30% 40% 50%

1.0 & 8764 .8927 .9134 9186 .9350 .9500 .9642 .9720 9773 .9816
10 9158 9317 .9447 .9485 9598 .9697 .9780 .9827 9857 .9880
15 9422 9525 .9605 .962% 9714 9781 9839 .9871 9893 .9910
20 9571 .9642 9705 .9721 9779 9832 .9877 .9901 .9918 .9930
25 9630 .9692 9749 9767 9818 .9860 .9898 .9917 .9931 .9942
30 9701 9757 9798 .9810 .9849 .9882 .9913 .9930 .9941 .9950

0.8 5 .8609 .8757 .8944 9047 9285 9470 .9619 9701 .9765 .9812
10 9094 9256 .9404 9444 9563 9680 9773 .9823 .9856 .9882
15 .9442 9534 9615 .9643 9718 9787 9847 .9880 .9901 .9918
20 9595 .9653 9716 9736 9788 9836 .9882 .9907 9924 .9937
25 .9694 9744 9786 .9804 .9838 .9877 9910 .9928 .9940 .9950
30 9717 9769 9814 9826 .9863 .9895 .9924 .9939 .9950 .9958

06 5 .8908 .8938 .8991 .9017 9156 .9365 9584 9674 9760 .9828
10 .8745 .8986 .9197 .9265 9458 .9601 9722 9790 .9830 .9861
15 9223 9368 .9487 .9522 9636 9727 9806 .9849 .9878 .9899
20 9459 9546 .9631 9659 .9733 9798 9855 9887 .9907 .9923
25 9578 9654 9718 .9740 .9790 .9840 9886 .9909 .9926 .9938
30 9683 .9729 9767 9781 9827 9868 .9907 .9926 .9940 .9949

4. THE POWER OF THE TESTS

In this section, we calculate the power of the proposed tests by replacing the Ray{6,0)
random variates generator in the simulation programs with the generators from the alter-
native distributions including; normal, lognormal, cauchy, Weibull, gamma and mixture of
two exponential distributions. Based on different sample sizes, different censoring ratios and
10,001 runs, the power is calculated to be

# of rejection of Hy
10,001 ’

Power =

where Hy is rejected if T7(7T2) > the corresponding percentage points given in Table
2.1 (Table 2), and T7(T3) is evaluated from the alternative distributions.

Tables 4.1 and 4.2 represent the power of the tests for the one-parameter and
two-parameter cases, respectively. The different alternative distributions considered
are:

1. Normal distribution N(u, o)
2. Lognormal LN (u, o)

3. Weibull distribution with shape a, scale parameter ¢ and location parameter
w, W(p,0,0),
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4. Exponential distribution with scale parameter o and location parameter u,
EXP(p,0),

5. Gamma distribution with shape parameter k, scale parameter o and location
parameter u, G(u, 0, k)

6. Cauchy distribution with scale parameter o and location parameter u, C(g, o).

7. Mixture of two exponential distributions, MTE(61,02,w) = wfi(61) + (1 —
w) fa(62).

Table 4.1 and 4.2 indicate that the correlation test has good power to reject
sample from the chosen alternative distributions. Also, the power increases as the
sample sizes increase for all given censoring ratios p = 1.0,0.8 and 0.6 as well as the
significance level increases.

Examples:

In order to show the performance of the test for Ray(6, o) distribution in both
cases (one-parameter and two-parameter), we simulate four sets of order statistics
each of size 20; they are

Table 4.1. Power of The Test Based on One-parameter Case (o = 1).
N(0,1) Ww(0,1,5) w(0,1,10) EXP(0,1) LN(0,1)
p n 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
1.0 5 9748 9802 .1743 .3806 .7338  .9282 .5137 .6038 4751 .5590
10 .9987 .09993 6585  .8407 9996 9999 7462 .8128 .7376 .7963
15 1.0000 1.0000 .9264 9791 1.0000 1.0000 .8726 9171 .8762 .9130
20 1.0000 1.0000 .9891 .9980 1.0000 1.0000 .9383 .9651 .9404 .9554
25 1.0000 1.0000 .9987 .8997 1.0000 1.0000 9704 .9833 .9704 .9839
30 1.0000 1.0000 .9999 1.0000 1.0000 1.0000 .9880 .9941 .9892 .9943

0.8 5 9758  .9806 .0342  .1683 1782 5930 4204 5242 2859 .3719
10 .9989 9991 .3941  .6234 9704 9959  .6453 7355 4712 .5646
15 1.0000 1.0000 .7216  .8590 9999 1.0000 7884 8494 .5993 .6804
20 1.0000 1.0000 .9102 9614 1.0000 1.0000 .8774 9179 7131 .7778
25 1.0000 1.0000 .9711 .9924 1.0000 1.0000 .9218 9530 .7725 .8363
30 1.0000 1.0000 .9917 9980 1.0000 1.0000 .9568 .9746 .8304 .8843

06 5 9776 9801 .0000 .0260 .0000 .0888  .3505 4512 .1510 .2360
10 .9993 9994 1167  .3086 5913 8726  .5217 .6201 .2338 .3256
15 1.0000 1.0000 .4207 .6306 9762 9951 6653 7442 3248 4163
20 1.0000 1.0000 .6541 .8195 .9993 9998 .7632 .8300 .3776 .4737
25 1.0000 1.0000 .8027 9106 1.0000 1.0000 .8187 8762 .4245 .5258
30 1.0000 1.0000 .9028 9639 1.0000 1.0000 .8736 .9183 .4761 .5815
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Table 4.2. Power of The Test Based on Two-parameter Case 8 = 0.0,0 = 1.0.

LN(1,5) W(0,1,03)  MTE(@,2,5) G(,1,0.4) C(0,1)

» n 5% 10% 5% 0% 5% 10% 5%  10% 5%  10%
1.0 5 8614 9053  .7312  .8083 4911 5083  .3906 .5004 .2825 .3757
10 .9984 9991  .9824  .9905  .8826  .9263  .7935 .8625 .5899 .6779

15 1.0000 1.0000 .9997  1.0000 .9842  .9925  .9450 .9705 .7788 .8427

20 1.0000 1.0000 1.0000 1.0000 .9984  .9993  .9873 .0944 .8905 .9308

25 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9980 .9995 .9463 .9677
30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9997 .9998 .9757 .9865
0.8 5 .6449 7044 5304  .6064  .3520 4333 2853 .3696 .0644 2069
10 .9790 9868  .9201 9589  .7878  .8530  .6697 .7604 .3945 .5161

15 .9989  .9994 9944  .9968 9514  .9688  .8905 .9343 .6339 .7195

20 1.0000 1.0000 .9997  .9997  .9908  .9953  .9654 9818 .7911 .8417
25 1.0000 1.0000 1.0000 1.0000 .9979  .9986  .9923 .9957 .8888 .9224
30 1.0000 1.0000 1.0000 1.0000 .9993  .9994  .9987 .9993 9371 .9552
06 5 .4121 5202 .3379 4450 .1644 2689  .2014 .2995 .0322 .0613
10 .8568  .9043  .7856  .8570  .4820 5813  .5041 .6153 .2157 .3504

15 .9763 9867  .9487  .9700  .6903  .7626  .7477 .8280 .4803 .5963
20 9970  .9985 9921  .9956  .8150  .8619  .8968 .9359 6771 .7597
25 1.0000 1.0000 .9988  .9991  .8932  .9261  .9576 .9730 .8080 .8646
30 1.0000 1.0000 .9996  .9999  .9323  .9585  .9860 .9928 .8853 .9233

1. Sample from Ray(0,1): one-parameter case of Rayleigh distribution with lo-
cation parameter is equal to 0 and scale parameter is equal to 1.

2. Sample from Ray(1,2): two-parameter case of Rayleigh distribution with lo-
cation parameter is equal to 1 and scale parameter is equal to 2.

3. Sample from W (0, 1, 10): two-parameter case of the Weibull distribution with
location parameter is equal to 0, scale parameter is equal to 1 and shape
parameter equal to 10.

4. Sample from LN(1,5): two-parameter case of the lognormal distribution with
location parameter is equal to 1 and scale parameter is equal to 5.

The order statistics samples with the analogous moments of order statistics from
Ray(0,1), Table 2.1 and Table 3.1 are used to run the test. The results of the tests

at 5% significance level are given below:

Decision

Distribution P 90%

95%

W (0,1, 10)

1.0
0.8
0.6

Ray(0,1)

1.0
0.8
0.6

g Bl

bl g Bl s
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Decision
Distribution P  90% 95%
LN(1,5) 1.0

R R

08 R R

06 R R

Ray(0,1) 10 A A
08 A A

06 A R

5. APPLICATION

The set of data on the endurance of deep ball bearings analyzed by Lieblein and
Zelen (1956) consists of the number of million revolutions before failure for each of
the 23 ball bearings in life test. The first 20 of the data are:

17.88, 42.12, 51.96, 68.84, 93.12, 127.96, 28.92, 45.60, 54.12, 68.64, 98.64, 128.01,
33.0, 48.48, 55.56, 68.88, 105.12, 173.4, 41.52, 51.84

The required moments of order statistics when are calculated from (1.5). Then
by using these moments and data life, we calculate the value T given in (2.1) for
different values of p as follows:

p Calculated Ty | Simulated Ty from Table 2.1
5% 10%

1.0 .9933 .0848 9880

0.8 .9926 .9866 .9895

0.6 .9908 .9838 .9874

As we can see the Rayleigh distribution fits the data at 5% and 10%. So, we
recommend the Rayleigh distribution for the given data. This is also clear from
the probability plots and the empirical cumulative distribution function (EDF) in
Figure 5.1.

6. CONCLUSION

The goodness of fit test of the Rayleigh distribution (one-parameter and two-
parameter cases) have been developed. The power of the proposed tests based on
some other distributions are also calculated by using Monte Carlo simulation as
presented in Tables 4.1 and 4.2. As we can see from Table 4.1 and 4.2, the test has
good power to reject the Rayleigh distribution Ray(#, o) when data are coming from
the considered alternative distributions. Finally, an application is investigated.
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Figure 5.1. Probability plot of the number of million revolutions and empirical
CDF of the number of million revolutions
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