Microcosm soil test를 이용한 지렁이 체내 축적 구리 농도와 구리 침출법 간의 상관관계 비교

Relationship between Extraction Methods of Copper in Soil and the Bioaccumulated Copper in Earthworm

  • 최윤석 (서울시립대학교 환경원예학과) ;
  • 김계훈 (서울시립대학교 환경원예학과)
  • Choi, Youn-Seok (Department of Environmental Horticulture, the University of Seoul) ;
  • Kim, Kye-Hoon (Department of Environmental Horticulture, the University of Seoul)
  • 투고 : 2007.05.18
  • 심사 : 2007.08.03
  • 발행 : 2007.08.28

초록

본 연구는 동판 건물 주변의 구리 오염 토양과 지렁이를 이용해 microcosm soil test를 실시함으로써 지렁이 체내에 농축된 구리 농도와 몇 가지의 토양 내 중금속 침출 방법으로 측정한 토양 내 구리 농도간의 상관관계를 비교하기 위하여 수행하였다. 조사 지역의 토양 시료를 이용해 control, 1C(Contamination level, 최저 처리 농도), 2C, 4C, 8C, 16C(최고 처리 농도)의 여섯 가지 처리구를 통해 microcosm soil test를 실시한 결과, 토양 내 구리의 농도와 실험 기간이 경과함에 따라 지렁이의 생장량과 지렁이 체내 농축 구리 농도가 함께 증가하는 것으로 조사되었으며, 그 정도는 microcosm 내 토양의 구리 처리 농도와 같은 순서였다. 토양 내 구리 농도를 조사하기 위해 공정시험법을 사용하였고 토양 내 구리 총함량을 조사하기 위해 EPA 3051 방법을 사용하였다. 공정시험법으로 침출한 토양 내 구리 농도와 토양 내 구리 총함량간의 상관계수(r)는 0.9875~0.9993로 고도의 정의 상관관계가 존재하였다. 위의 두 결과와 지렁이 체내에 농축된 구리 농도와의 상관관계를 비교해 본 결과, 공정시험법으로 침출한 토양 내 구리 농도와 지렁이 체내 농축 구리 농도간의 상관계수와 토양 내 구리 총함량과 지렁이 체내 농축 구리 농도간의 상관계수는 각각 0.9193~0.9728과 0.9282~0.9844로 고도의 정의 상관관계를 나타내었다. 토양 내 구리 농도와 지렁이 체내 농축 구리 농도 간에 상당히 높은 수준의 상관관계를 보임에 따라 지렁이는 토양 내 구리 오염에 대한 유용한 생물지표종(biological indicator species) 또는 생물모니터링(biomonitoring)에 적합한 종의 역할을 할 수 있을 것이라 판단하였다.

This study compared the correlation between the accumulated copper content in earthworms and the copper concentration rate of soil measured using several methods to extract heavy metals from soil. For the experiment, a microcosm soil test was carried out using copper contaminated soil from the vicinity of copper-roofed buildings and earthworms (Eisenia fetida). Soils from the study area were used to produce 6 treatments; control, 1C (contamination level with the lowest treated copper concentration rate), 2C, 4C, 8C, and 16C (contamination level with the highest treated copper concentration rate). Microcosm soil test using the 6 treatments proved that as the copper content in soil and the experiment time increased, the growth rate of and the accumulated copper concentration rate in earthworms increased as well. The degree of the increase corresponded to the order of the treated copper concentration levels in microcosm soils. Standard method of the ministry of environment and EPA method 3051 were used to obtain the copper concentration in soil and the total copper content in soil, respectively. The correlation coefficient (r) of 0.9875~0.9993 between the copper content extracted by the standard method and the total copper content shows high positive correlation. The correlation coefficient of the copper content in soil extracted by the standard method and the accumulated copper content in earthworms, and the correlation coefficient of the total copper content in soil and the accumulated copper content in earthworms were ranged from 0.9193 to 0.9728 and from 0.9282 to 0.9844, respectively, showing highly significant positive correlation. Due to the high correlation between the copper concentration in soil and the accumulated copper content in earthworms, it is concluded that earthworms are suitable to be used as biological indicator species or for bio-monitoring against copper contamination of soil.

키워드

참고문헌

  1. Bogomolov, D. M., S. K. Chen, R. W. Parmelee, S. Subler, and C. A. Edwards. 1996. An ecosystem approach to soil toxicity testing: a study of copper contamination in laboratory soil microcosms. Appl. Soil Ecol. 4:95-105 https://doi.org/10.1016/0929-1393(96)00112-6
  2. Burrows, L. A. and C. A. Edwards. 2002. The use of integrated soil microcosms to predict effects of pesticides on soil ecosystems. Eur. J. Soil Boil. 38:245-249 https://doi.org/10.1016/S1164-5563(02)01153-6
  3. Dai, J., T. Becquer, J. H. Rouiller, G. Reversat, F. BernhardReversat, J. Nahmani, and P. Lavelle. 2004. Heavy metal accumulation by two earthworm species and its relationship to total and DTPA-extractable metals in soils. Soil Biology and Biochemistry 36:91-98 https://doi.org/10.1016/j.soilbio.2003.09.001
  4. Fraser, L. H. 1999. The use of microcosms as an experimental approach to understanding terrestrial ecosystem functioning. Adv. Space. Res. 24(3):297-302 https://doi.org/10.1016/S0273-1177(99)00317-8
  5. Heimbach, F. 1992. Effects of pesticides on earthworm populations: comparison of results from laboratory and field tests, pp.299-302. In P. W. Greig-Smith, H. Becker, P. J. Edwards, and F. Heimbach (eds.). Ecotoxicology of earthworms. Intercept Publishers, Andover, UK
  6. Jung, G. B., W. I. Kim, K. H. Moon, and I. S. Ryu. 2000. Comparisons of simple extraction methods and availability for heavy metals in paddy soils. Korean Journal of Environmental Agriculture. 19(4):314-318
  7. Kula, H. 1992. Measuring effects of pesticides on earthworms in the field: test design and sampling methods. pp.90-99. In Ecotoxicology of Earthworm, P. W. Greig-Smith et al. (eds.). Intercept Ltd., Hants, UK
  8. Kuo, S. 1996. Phosphorus. p. 870-919. In: D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, and M. E. Sumner (ed.) Methods of soil analysis part 3: chemical methods. SSSA book series 5. SSSA and ASA, Madison, WI
  9. Langdon, J. C., T. G. Pierce, A. A. Meharg, and K. T. Semple. 2003. Interaction between earthworms and arsenic in the soil environment: a review. Environmental Pollution 124:361-373 https://doi.org/10.1016/S0269-7491(03)00047-2
  10. Lavelle, P. and V. S. Alister. 2001. Soil ecology. Kluwer academic publishers, Dordrecht, Netherlands
  11. Lee, J. W., B. K. Jang, S. G. Kim, and D. H. Kim. 1993. Comparison of contents of some heavy metal between soil and earthworm. J. of Environ. Sci. (Kyungpook Natl. Univ.) 7:235 245
  12. Lofs, A. 1992. Measuring effects of pesticides on earthworms in the field: effect criteria and endpoints. In Ecotoxicology of Earthworm, P. W. Greig-Smith et al. (eds.). Intercept Ltd., Hants, UK
  13. Martikainen, E., J. Haimi, and J. Ahtiainen. 1998. Effects of dimethoate and benomyl in soil organisms and soil processes-a microcosm study. Appl. Soil Ecol. 9: 381-387 https://doi.org/10.1016/S0929-1393(98)00093-6
  14. Method Development and Applications Section Environmental Technology Centre Environment Canada. 2004. Biological Test Method: Tests for Toxicity of Contaminated Soil to Earthworms (Eisenia andrei, Eisenia fetida, or Lumbricus terrestris). Environment Canada
  15. Miller, W. P. and D. M. Miller. 1987. A micro pipette method for soil mechanical analysis. Communications in Soil Science and Plant Analysis 18: 1-15 https://doi.org/10.1080/00103628709367799
  16. Ministry of Environment. 1996. Standard methods of soil analysis. Manual for soil environment conservation service(Govemrnent Reg. No. 12000-67630-67-9613). Ministry of Environment, Seoul
  17. Morgan, E. and T. Knacker. 1994. The role of laboratory terrestrial model ecosystems in the testing of potentially harmful substances. Ecotoxicol. 3:213-233 https://doi.org/10.1007/BF00117989
  18. Na, Y. E. 2004. Hazard assessment of organic waste-contaminated soil using earthworm. Ph. D. Thesis, Seoul National University, Seoul, Korea
  19. Nelson, D. W. and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter. In: A.L. Page (ed.) Methods of soil aualysis.Part 2. 2nd ed. Agronomy 9:961-1110
  20. Neuhauser, E. F., Z. V. Cukic, M. R. Malecki, R. C. Loehr, aud P. R. Durkin. 1995. Bioconcentration aud biokinetics of heavy metals in the earthworm. Environmental Pollution. 89(3):293-301 https://doi.org/10.1016/0269-7491(94)00072-L
  21. Paoletti Maurizio, G. 1999. The role of earthworms for assessment of sustainability aud as bioindicators. Agriculture, Ecosystem aud Environment. 74:137-155 https://doi.org/10.1016/S0167-8809(99)00034-1
  22. Sumner, M. E. aud W. P. Miller. 1996. Cation exchange capacity aud exchauge coefficients. p. 1201-1230. In: D. L. Sparks, A L. Page, P. A Helmke, R. H. Loeppert, P. N. Soltanpour, M. A Tabatabai, C.T. Johnston, aud M. E. Sunmer (ed.) Methods of soil aualysis part3: chemical methods. SSSA book series 5. SSSA aud ASA, Madison, WI
  23. Tarradellas, J., G. Bitton, and D. Rossel. 1996. Soil ecotoxicology. pp. 345-367. Lewis publisher, USA
  24. Thomas, G. W. 1996. Soil pH and soil acidity. p. 475-490. In: D. L.Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N.Soltanpour, M. A. Tabatabai, C. T. Johnston, and M. E. Sumner (ed.) Methods of soil analysis part 3: chemical methods. SSSA bookseries 5. SSSA and ASA, Madison, WI
  25. USEPA. 1994. Microwave Assisted Digestion of Sediments, Sludges, Soils, and Oils, method 3051. USEPA
  26. van Hook, R. I. 1974. Cadmium, lead and zinc distributions between earthworms and soils: potentials for biological accumulation. Bull. Environ. Contam. ToxicoI. 2:509-512
  27. Wui, S. U., Y. Inamori, K. Cho, M. S. Ra, and J. B. Lee. 2002. A study on the toxicity assessment of plating wastewater using aquatic microcosm. Korean J. Environ. Biol. 20(3):256-262