몇 가지 처리제의 첨가에 의한 돈분의 퇴비화 과정 중 암모니아 발생 저감 효과

The Effect of Some Amendments to Reduce Ammonia during Pig Manure Composting

  • 주진호 (강원대학교 자원생물환경학과) ;
  • 김대훈 (강원대학교 자원생물환경학과) ;
  • 유재홍 (농업과학기술원) ;
  • 옥용식 (강원대학교 자원생물환경학과)
  • Joo, Jin-Ho (Department of Biological Environment, Kangwon National University) ;
  • Kim, Dae-Hoon (Department of Biological Environment, Kangwon National University) ;
  • Yoo, Jae-Hong (National Institute of Agricultural Science and Technology) ;
  • Ok, Yong-Sik (Department of Biological Environment, Kangwon National University)
  • 투고 : 2007.05.15
  • 심사 : 2007.06.02
  • 발행 : 2007.08.28

초록

최근 악취발생으로 의한 사회적 관심 증가, 피해사례 증가에 대해 과학적 저감 기술이 요구되나 확실한 악취저감 기술의 미흡과 악취저감용 처리제의 기초평가자료가 부족한 실정이다. 본 연구는 부산물 퇴비에서 발생되는 악취물질인 $NH_3$를 저감하기 위한 처리제 선발 및 평가에 목적을 두어 수행되었으며 본 연구 결과를 요약하면 다음과 같다. 부숙화 과정에서 calcium hydroxide, activated carbon, zerovalent iron (ZVI)처리에서 60 이상으로 온도 상승을 보여 부숙진행이 원할히 이루어졌음을 알 수 있었다. calcium hydroxide, activated carbon, ZVI에서 pH 변화는 퇴비화가 진행됨에 따라 상승하여 후부숙 단계에서는 pH 8.6 - pH 8.8을 보였다. 또한 부숙화 과정 14일 동안 calcium hydroxide 처리구의 EC는 $2.15dS\;m^{-1}$에서 $0.66dS\;m^{-1}$으로, carbon $1.48dS\;m^{-1}$에서 $1.11dS\;m^{-1}$, ZVI $1.77dS\;m^{-1}$에서 $0.68dS\;m^{-1}$으로 EC값이 큰 폭으로 줄어드는 것을 확인할 수 있었다. EC값이 1일차에서의 각각의 처리제별로 약간의 차이를 보이는 것은 퇴비 자체가 불규칙적인 상태의 고체이기 때문이라고 사료되며 측정치가 약 $0.5dS\;m^{-1}$ - $0.7dS\;m^{-1}$ 의 차이를 보였다. 인도페놀법을 이용한 $NH_3$ 측정 결과에 따르면 activated carbon의 경우 초기 8.8ppm에서 30일 후 0.1ppm으로 생분 + 톱밥의 9.3ppm보다 약 93배가량 저감하는 것으로 나타났다. Calcium hydroxide의 경우는 30일 후 0.7ppm으로 약 13배 정도 저감하였으며 ZVI의 경우는 30일 후 1.7ppm으로 약 5배 정도 저감하였다. 위 결과들을 종합해본 결과, 부산물퇴비에서 발생되는 $NH_3$를 저감하기 위한 처리제로서 calcium hydroxide, activated carbon, zero valent Iron (ZVI)를 활용할 수 있을 것이라고 사료 되나 향후 처리제의 독립적 사용가능성, 복합적 사용가능성 등에 대한 연구가 추가적으로 수행되어야 할 것이라고 판단된다.

Occurrence of malodor could cause adverse impacts on human health and increase public interest. Therefore, scientific methods to decrease odor is required. Endeavor to decrease odor from compost however has not fully been successful. The purpose of this research is assessment of some amendments to reduce $NH_3$ from immature composts. Calcium hydroxide was applied to composts due to it's characteristics to increase pH. Activated carbon and zerovalent iron (ZVI) were selected because of their adsorption properties. The research results were as follows: Calcium hydroxide, activated carbon, zerovalent iron increased the composting temperature above $60^{\circ}C$. The addition of calcium hydroxide, activated carbon, and ZVI to compastry process increased pH 8.6 - 8.8 from $1^{st}$ day to $14^{th}$ day. During the 14 days of composting, addition of calcium hydroxide, activated carbon and ZVI changed EC from $2.15-0.66dS\;m^{-1}$, $1.48-1.11dS\;m^{-1}$, respectively and $1.77-0.68dS\;m^{-1}$. The difference in EC of the compost was due to irregularities of samples. Organic matter in the compost decreased through out theexcept control. The $NH_4-N/NO_3-N$ ratio of all experimental compost increased through the process. The addition of activated carbon, calcium hydroxide and ZVI decreased $NH_3$ from 0.1ppm, 0.7ppm and 1.7ppm more than the control (pig manure and sawdust), 9.3ppm, in 30 days of composting. In conclusion, odor from prematured compost decreased by addition of chemicals like calcium hydroxide, activated carbon, zerovalent iron. Moreover, use of these $NH_3$ reducers alone or together combined at different periods of composting etc. could decrease $NH_3$.

키워드

참고문헌

  1. Bolt, G.H. and Bruggenwert, M.G.M. 1976 Soil chemistry. Development in soil science. 5A, 173-182
  2. Broadbent, F. E., Rauschkolb, R.S., Lewis, K.A. and Chang, G.Y. 1980 Nitrogen 15 enrichment of soils and soil derived nitrate. J. Environ. Qual. 2 363-365 https://doi.org/10.2134/jeq1973.00472425000200030013x
  3. Burrows, S. 1951 The chemistry of mushroom compost II Nitrogen changes during the composting and cropping process. J. Sci. Food Agric. 2 403-410 https://doi.org/10.1002/jsfa.2740020906
  4. Cardenas, R.R. and L.K. Wang. 1989. Evalutionof city refuse compost maturity: A review. Biological Wastes. 27:115-142 https://doi.org/10.1016/0269-7483(89)90039-6
  5. Chen, Y. and Y. Inbar 1993 Chemical and spectroscopical analysis of organic matter transformation during composting in relation to compost maturity. In: H.A.J. Noitink and H.M. Keener(eds.). Science and Engineering of Composting. Ohio Univ. p. 551-600
  6. Chung, J. C. and J. H. Hong 1994 Physicochemical indicators composting and process control. J. of KOWREC, 2(2) 99-127
  7. Diaz, L.P., G.E. Savage, L.L. Eggerth, and co. Golueke. 1993. Composting and recycling municipal solid waste. Lewis Publishers, London
  8. Falcon, M.A., E. Corominas, M.L. Perez, and F. Perestelo. 1987. Aerobic Bacterial Populations and Environmental Factors Involved in the Compo sting of Agricultural and Forest Wastes of the Canary Islands. Biological Wastes 20:89-99 https://doi.org/10.1016/0269-7483(87)90159-5
  9. Lo, K V. and A.K Liao. 1993. Composting of separated solid swine waste. J. Agri. Engin. Res. 54:307-317 https://doi.org/10.1006/jaer.1993.1023
  10. Ministry of Environment. 2004. Report of Animal manure 2004. 9098
  11. Mori, T., A. Nirita, T. Aminoto, and M. Chino. 1981. Composting of municipal sewage sludge mixed with rice hulls. Soil Sci. Plant Nutr. 27(4):477-486 https://doi.org/10.1080/00380768.1981.10431303
  12. National Institute of Environmental Research (NIER). 2005. Odor for experiment manual. 70-76
  13. NIAST. 1999. Methods of soil and plant analysis
  14. Seo, M.C., Kauzutaka Kuroda, Dai Hanajirna, and Kiyonori Haga. 1998. Effect of Thermophilic Ammonium Tolerant Bacteria on Malodors Emission of Compo sting of Pig Manure. Korean Joumal of Soil Science and Fertilizer. 13(1):77-84