Effects of Soil Percolation Rate by Different Drainage Treatments on CH4 and N2O Emissions from Paddy Field

배수 개선처리에 따른 토양 투수속도 변화가 논에서 CH4 및 N2O 배출에 미치는 영향

  • Ko, Jee-Yeon (RDA, NICS, Yeongnam Agricultural Research Institute) ;
  • Lee, Jae-Saeng (RDA, NICS, Yeongnam Agricultural Research Institute) ;
  • Jung, Ki-Yeol (RDA, NICS, Yeongnam Agricultural Research Institute) ;
  • Choi, Young Dae (RDA, NICS, Yeongnam Agricultural Research Institute) ;
  • Lee, Dong-Wook (RDA, NICS, Yeongnam Agricultural Research Institute) ;
  • Yun, Eul-Soo (RDA, NICS, Yeongnam Agricultural Research Institute) ;
  • Kim, Choon-Shik (RDA, NICS, Yeongnam Agricultural Research Institute) ;
  • Park, Seong-Tae (RDA, NICS, Yeongnam Agricultural Research Institute)
  • 고지연 (작물과학원 영남농업연구소 식물환경과) ;
  • 이재생 (작물과학원 영남농업연구소 식물환경과) ;
  • 정기열 (작물과학원 영남농업연구소 식물환경과) ;
  • 최영대 (작물과학원 영남농업연구소 식물환경과) ;
  • 이동욱 (작물과학원 영남농업연구소 식물환경과) ;
  • 윤을수 (작물과학원 영남농업연구소 식물환경과) ;
  • 김춘식 (작물과학원 영남농업연구소 식물환경과) ;
  • 박성태 (작물과학원 영남농업연구소 식물환경과)
  • Received : 2007.05.02
  • Accepted : 2007.06.08
  • Published : 2007.06.30

Abstract

The effects of soil percolation rate on $CH_4$ and $N_2O$ emissions were investigated from paddy fields with different drainage systems. Subsurface tile drainage plot of soil percolation rate $11.9mm\;d^{-1}$ and non-subsurface drainage plots of soil percolation rate $7.4mm\;d^{-1}$ and $6.9mm\;d^{-1}$ were designed. The effects of rice straw application were measured at each drainage plots. The subsurface tile drainage plot of soil percolation rate $11.9mm\;d^{-1}$ showed the lower emission amount both of $CH_4$ and $N_2O$ among treatments. In the subsurface tile drainage plot of $11.9mm\;d^{-1}$ percolation rate, 46% of $CH_4$ and 33% of $N_2O$ emission amounts were reduced in comparison of non-subsurface drainage plot of $6.9mm\;d^{-1}$ percolation rate. With rice straw application, the $CH_4$ emission amount was 2.1 times to that from no-applied plot, the $N_2O$ emission amount was not affected by rice straw application.

Keywords

References

  1. Abao, E.B., K.F. Bronson, R. Wassmann and U. Singh, 2000. Simultaneous records of methane and nitrous oxide emissions in rice-based cropping systems under rainfed conditions. Nutr. Cycl. Agroecosyst. 58: 131-140 https://doi.org/10.1023/A:1009842502608
  2. Bleakley, B.H., H. Bruce and J.M. Tiedje. 1982. Nitrous oxide production by organisms other than nitrifiers or denitrifiers. Appl. Environ. Microbiol. 44(6): 1342-1348
  3. Bollmann, A. and R. Conrad. 1998. Influence of O2 availability on NO and $N_{2}O$ release by nitrification and denitrification in soils. Global Change Biology 4(4):387-396 https://doi.org/10.1046/j.1365-2486.1998.00161.x
  4. Bosse, U. and P. Frenzel. 1997. Activity and distribution of methane - oxidizing bacteria in flooded rice soil microcosms and in rice plants (Oryza sativa). Appl. Environ. Microbiol. 63:11991207
  5. Bosse, U. and P. Frenzel. 1998. Methane emissions from rice microcosms the balance of production, accumulation and oxidation. Biogeochemistry 41: 199-214
  6. Cai, Z., R J. Laughlin and Stevens R.J. 2001. Nitrous oxide and dinitrogen emissions from soil under different water regimes and straw amendment. Chemosphere. 42(2):113-121 https://doi.org/10.1016/S0045-6535(00)00116-8
  7. Cicerone, R. J., and J. D. Shetler. 1981. Sources of atmespheric methane: Measuremants in rice paddies and discussion. J. Geophys. Res. 86:7203-7209 https://doi.org/10.1029/JC086iC08p07203
  8. Conrad, Rand F. Rothfuss. 1991. Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Biology and Fertility of Soils. V12( 1):28- 32
  9. Hwang, S. and K. Hanaki. 2000. Effects of oxygen concentration and moisture content of refuse on nitrification, denitrification and nitrous oxide production. Bioresource Technology 71 (2): 159-165 https://doi.org/10.1016/S0960-8524(99)90068-8
  10. Intergovernmental Panel on Climate Change(IPCC), 2001. Climate Change 2001: The Scientific Basis. Cambridge University PRESS, Cambridge, UK
  11. Jeon, W. T., C. Y. Park, K. D. Park, Y. S. Cho, J. S. Lee and D. C. Lee. 2002. Changes of soil characteristics, rice growth and lodging traits by different fertilization and drainage J. Kor. Soc. Soil Sci. Fert. 35(3): 153-161
  12. Kimura, M., Y. Miura, A. Watanabe, J. Murase and S. Kuwatsuka. 1992. Methane production and its fate in paddy fields. I. Effects of rice straw application and percolation rate on the leaching of methane and other soil components into the subsoil. Soil Science and Plant Nutrition 38:665 672 https://doi.org/10.1080/00380768.1992.10416696
  13. Kimura, M., J. Murase, L. Yahai. 2004. Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products ($CO-{2}$ and $CH_{4}$. Soil Biology and Biochemistry 36(9): 1399-1416 https://doi.org/10.1016/j.soilbio.2004.03.006
  14. Ko, J.Y., H.W. Kang, U.G. Kang, H.M. Park, D.K Lim and K.B. Park. 1998. The effects of nitrogen fertilizers and cultural patterns on methane emission from rice paddy field. Koe. J. Env. Agri. 17(3):227-233
  15. Ko,J.Y. and H.W. Kang. 2000. The effects of cultural practices on methane emission from rice field. Nutrient cycling in agroecosystems 58:311-314 https://doi.org/10.1023/A:1009867208059
  16. Ko,J. Y., J. S. Lee, M. T. Kim, H. W. Kang, U. G. Kang, D. C. Lee, Y. G. Shin, K Y. Kim and K B. Lee. 2002. Effects of Cultural Practices on Methane Emission in Tillage and No - tillage Practice from Rice Paddy Fields J. Kor. Soc. Soil Sci. Fert. 35(4):216-222
  17. Lee, K B., D. B. Lee, J. G. Kim and Y. W. Kim. 1997. Effect of Rice Cultural Patterns on Methane Emission from a Korean Paddy Soil. J. Kor. Soc. Soil Sci. Fert. 30(1):35-40
  18. Lee, K B., D. B. Lee, T. Y. Uhm, J. G. Kim, C. H. Yoo and Y. W. Kim 1997. Influence of Different Rice Varieties on Emission of Methane in Soil and Exudation of Carbohydrates in Rhizosphere. J. Kor. Soc. Soil Sci. Fert. 30(3):257-264
  19. Lee, K B. J. G. Kim, C. W. Park, Y. K Shin, D. B. Lee, J. D. Kim. 2005. Effect of Irrigation Water Depth on Greenhouse Gas Emission in Paddy Field J. Kor. Soc. Soil Sci. Fert. 38(3): 150-156
  20. McTaggart, I. P., H. Akiyama, H. Tsuruta, B.C.Ball. 2002. Influence of soil physical properties, fertilizer type and moisture tension on N2O and NO emissions from nearly saturated Japanese upland soils. Nutrient Cycling in Agroecosystems 63(2):207-217 https://doi.org/10.1023/A:1021119412863
  21. Murase, J., M. Kimura and S. Kuwatsuka. 1993. Methane production and its fate in paddy fields. III. Effects of percolation on methane flux distribution to the atmosphere and the subsoil. Soil Science and Plant Nutrition 39:63-70 https://doi.org/10.1080/00380768.1993.10416975
  22. Minami, K. 1993. Methane from rice production. Res. Rep. Div. Environ. Planning. 9:243-258
  23. Neue, H.U. 1993. Methane emission from rice fields. Biosciences. 43:466-474 https://doi.org/10.2307/1311906
  24. Neue, H. U., R. Wassermann, R. S. Lantin, M. C. Alberto and J. B. Aduna. 1994. Effect of fertilization on methane emission. Int Rice Research Notes 19(3):33-34
  25. Renault, P. and J.Sierra. 1994. Modelling oxygen diffusion in aggregated soils. Anaerobiosis in topsoil layers. Soil Sci. Soc. Am. J. 58:1023 1030 https://doi.org/10.2136/sssaj1994.03615995005800040005x
  26. Ruser, R., H. Flessa, R. Russow, G. Schmidt, F.Buegger, J.C.Munch. 2006. Emission of $N_{2}O$, $N_{2}$ and $CO_{2}$ from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting. Soil Biology and Biochemistry. 38(2):263-274 https://doi.org/10.1016/j.soilbio.2005.05.005
  27. 류철현. 암거배수 조건에서 답전윤환이 토양의 이화학성 변화에 미치는 영향 1993. 호남농업시험장 시험연구보고서
  28. Shin, Y. K. 1996. Mitigation options for methane emission from rice fields in Korea. Ambio. 25(4):289-291
  29. Yagi, K., K. Minami and Y. Ogawa. 1998. Effects of water percolation on methane emission from rice paddies. Plant and Soil. 198: 193-200 https://doi.org/10.1023/A:1004379914540
  30. Yagi, K. and K. Minami. 1990. Effect of Organic Matter Application on Methane Emission from Some Japanese Paddy Fields. Soil Sci. Plant Nutr. 36:599-610 https://doi.org/10.1080/00380768.1990.10416797
  31. Yu, K.W., and W.H.Patrick. 2003. Redox range with minimum nitrous oxide and mrthane production in a rice soil under different pH. Soil Sci. Soc. Am. J. 67:1952-1958 https://doi.org/10.2136/sssaj2003.1952
  32. Wassrnann, R., H.U. Neue, J.K. Ladha, M.S. Aulakh, 2004. Mitigating Greenhouse Gas Emissions from Rice-Wheat Cropping Systems in Asia. Environment, Development and Sustainability 6:65-90 https://doi.org/10.1023/B:ENVI.0000003630.54494.a7
  33. Wrage, N., G.L. Velthoof, M. L. van Beusichem, O. Oenema. 2001. Soil Biochemistry. 33: 1723-17327 https://doi.org/10.1016/S0038-0717(01)00096-7
  34. Zheng, X., M. Wang, Y. Wang, R. Shen, J. Gou, J. Li, J. Jin, L. Li. 2000. Impacts of soil moisture on nitrous oxide emission from croplands: a case study on the rice-based agro-ecosystem in Southeast China. Chemosphere - Global Change Science 2:207-224 https://doi.org/10.1016/S1465-9972(99)00056-2