Environmental Impacts of Food Waste Compost Application on Paddy Soil

음식물쓰레기 퇴비 시용이 논토양에 미치는 영향

  • So, Kyu-Ho (National Institute of Agricultural Science and Technology) ;
  • Seong, Ki-Seog (National Institute of Agricultural Science and Technology) ;
  • Seo, Myung-Chul (National Institute of Agricultural Science and Technology) ;
  • Hong, Seung-Gil (National Institute of Agricultural Science and Technology)
  • Received : 2007.01.23
  • Accepted : 2007.02.12
  • Published : 2007.02.28

Abstract

To determine the influence of food waste compost (FWC) application on paddy soil, FWC was applied to the paddy soil and then compared with farmer's practice as to the effects on rice and soil environment. Initially, pig manure compost (PMC) had high content of phosphorus ($15g\;kg^{-1}$) and potassium ($23g\;kg^{-1}$), while FWC had high content of total nitrogen ($13g\;kg^{-1}$) and salinity ($18.5g\;kg^{-1}$). Comparison was also made between chemical fertilizer and FWC use as a trial in the paddy field under the clay loam and sandy loam soil. In the panicle formation stage, chemical fertilizer application was proper in clay loam while PMC application was proper in sandy loam. However, chemical fertilizer produced higher yield compared to compost treatment, both on clay loam and sandy loam with 20~25% and 17~19%, respectively. The lower yield in sandy loam maybe due to slow mineralization of compost such that the crop did not effectively use it. Organic matter content in paddy soil after experiment was higher in FWC and PMC plots compared to that in chemical fertilizer plots. But the other soil properties were comparable. Therefore, the FWC compost had little effect on soil when it use as a trial in paddy field. Likewise, after the application of FWC as a trial, analysis of nitrate nitrogen and ammonium nitrogen in the surface water and 60 cm depth of paddy soil water nine days after planting was done. Results revealed that concentration of ammonium nitrogen was similar to irrigation water while nitrate nitrogen concentration was not detected, and hence did not contribute to water pollution. It is concluded that the application of FWC in the paddy field had not affected on environmental pollution in the paddy field. But its use as compost during rice culture reduced yield quantity. Such study should include selection of compost material, amount and method of compost application.

염분 함량이 높은 음식물쓰레기 퇴비의 안전한 농업적 활용을 도모하고자, 음식물쓰레기 퇴비를 논에 시용하고 벼를 재배하면서 관행구 등과 비교하여 벼 생육 반응에 미치는 영향과 토양 환경에 미치는 영향 등을 조사하였다. 시험재료의 성분 함량은 돈분퇴비에서 인산 ($15g\;kg^{-1}$)과 칼리 ($23g\;kg^{-1}$)가 높은 반면 음식물 쓰레기 퇴비에서는 전질소 ($13g\;kg^{-1}$)와 염분 ($18.5g\;kg^{-1}$)이 높은 재료였다. 논 영향평가는 식양질과 사양질 토양에서 화학비료 처리를 대조로 돈분퇴비와 음식물 쓰레기 퇴비를 시용하고 추청벼를 재배하며 실시하였다. 벼 유수형성기까지의 생육은 식양질 논에서는 화학비료 시용구가, 사양질 논에서는 돈분퇴비 시용구가 생육이 양호하였다. 수량은 두 토양 모두 화학비료 시용구에서 가장 높았고 퇴비 시용구는 식양질 논과 사양질 논에서 각각 20~25 %, 17~19 % 감수하였다. 이와 같이 초기보다 후기에 생육이 부진한 것으로 보아 감수 원인은 퇴비의 무기화가 늦어져 작물에 이용되지 못한 데 있는 것으로 보인다. 시험 후 토양의 성분 함량은 화학비료 처리보다 음식물쓰레기 퇴비와 돈분퇴비를 시용했을 때 유기물 함량이 약간 증가하는 경향은 있으나, 다른 성분은 별 차이가 없어 이들 퇴비를 논 토양에 시용했을 때의 토양에 미치는 영향은 크지 않은 것을 알 수 있었다. 또한 음식물쓰레기 퇴비를 시용하고 논 표면수와 60 cm 깊이의 침투수 중 암모니아태 및 질산태 질소를 분석한 결과, 이앙 9일 째에 암모니아태 질소는 관개수 농도 수준, 질산태질소는 거의 불검출 수준에 가깝게 낮아져 2차 수질오염에 대한 영향도 크지 않은 것으로 나타났다. 이상을 종합하여 볼 때 음식물쓰레기 퇴비를 논에 시용할 경우, 수질 및 토양 등 환경에 미치는 영향은 적으나 퇴비로만 벼를 재배하면 수량이 감소하였다. 따라서 논에서의 안정적인 음식물 쓰레기 퇴비 시용을 위하여는 퇴비 자재의 선택과 시용량, 시용방법 등에 대해 좀 더 많은 연구가 필요할 것으로 판단되었다.

Keywords

References

  1. Bernstein, L. 1975. Effects of salinity and sodicity on plant growth. Annu. Rev. Phytopathol. 13:295-312 https://doi.org/10.1146/annurev.py.13.090175.001455
  2. Bernstein, L., and H.E. Hayward. 1958. Physiology of salt tolerance. Annu. Rev. Plant Phys. 9:25-46 https://doi.org/10.1146/annurev.pp.09.060158.000325
  3. Coleman, D.C., C.P.P. Reid, and C.V. Cole. 1983. Biological strategies of nutrient cycling in soil systems. Adv. Ecol. Res. 13:1-55 https://doi.org/10.1016/S0065-2504(08)60107-5
  4. Comly, H. 1945. Cyanosis in infants caused by nitrates in well water. J. Am. Med. Assoc. 129:112-116 https://doi.org/10.1001/jama.1945.02860360014004
  5. Duxbury, J.M., M.S. Smith, and J.W. Doran. 1989. Soil organic matter as a source and a sink of plant nutrients, p. 33-68. In D.C. Coleman et al. (ed.) Dynamic of soil organic matter in tropical ecosystem. University of Hawaii Press
  6. Giusquiani, P.L., M. Pagliai, G. Gigliotti, D. Businelli, and A. Benetti. 1995. Urban waste compost: effects on physical, chemical, and biochemical soil properties. J. Environ. Qual. 24:175-182 https://doi.org/10.2134/jeq1995.00472425002400010024x
  7. Greenway, H., and R. Munns. 1980. Mechanisms of Salt Tolerance in Nonhalophytes. Annu. Rev. Plant Phys. 31:149-190 https://doi.org/10.1146/annurev.pp.31.060180.001053
  8. Hayward, H.E., and C.H. Wadleigh. 1949. Plant Growth on Saline and Alkali Soils. Adv. Agron. 1:1-38 https://doi.org/10.1016/S0065-2113(08)60745-2
  9. KFRI. 2001. Study on assessing the economic value of food waste. Korea Food Research Institute
  10. Lee, E.W. 1982. Paddy Rice Farming, 3ed. Hyangmoonsa
  11. Lee, S.E., H.J. Ahn, S.K. Youn, S.M. Kim, and K.Y. Jung. 2000. Application effect of food waste compost abundant in NaCl on the growth and cationic balance of rice plant in paddy soil. Korean J. Soil Sci. Fert. 33:100-108
  12. Litterick, A.M., L. Harrier, P. Wallace, C.A. Watson, and M. Wood. 2004. The role of uncomposted materials, composts, manures, and compost extracts in reducing pest and disease incidence and severity in sustainable temperature agricultural and horticultural crop production - a review. Crit. Rev. Plant Sci. 23:453-479 https://doi.org/10.1080/07352680490886815
  13. Maeda, K., and H. Shiga. 1978. Relationship between mineralization and nitrogen influenced by various conditions of submerged soils. Soil Sci. Plant Nutr. 24:515-524 https://doi.org/10.1080/00380768.1978.10433131
  14. MAF. 2001. MAF Announcement 2001.1.10: Prohibition to feed the foodwaste feedstuffs to the ruminants and punishment. Ministry of Agriculture and Forestry
  15. NIAST. 1999. Manufacture and utilization of compost and liquid manure for environmental friendly agriculture. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea
  16. NIAST. 2000. Soil tests and plant analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea
  17. Oh, W.G., and S.K. Lee. 1971. Studies on the effect of compost and fresh rice straw and paddy yield. Korean J. Soil Sci. Fert. 4:177-186
  18. Park, K.B. 1993. Effect of the Whole layer Application of Slow release Fertilizer on Growth and Yield of Rice. Korean J. Crop Sci. 37:499-505
  19. Park, Y.H., S.B. Ahn, and C.S. Park. 1984. Evaluation of the Parameters of Soil Potassium Supplying Power for Predicting Yield Response, $K_{2}O$ Uptake and Optimum $K_{2}O$ Application Levels in Paddy Soils II. Determination of Potassium Supplying Power by Gapon equation and Kas/Kai and Response to $K_{2}O$ Application. Korean J. Soil Sci. Fert. 17:363-370
  20. RDA. 1995. Research Manual for the farming test. 3 ed. Rural Development Administration, Suwon, Korea
  21. Shannon, M.C. 1997. Adaption of plants to salinity. Adv. Agron. 60:75-120 https://doi.org/10.1016/S0065-2113(08)60601-X
  22. Wong, J.W.C., and G.E.Ho. 1991. Effects of gypsum and sewage sludge amendment on physical properties of fine bauxite refining residue. Soil Sci. 152:326-332 https://doi.org/10.1097/00010694-199111000-00003