Ground Fault Current Variation of 22.9kV Multi Neutral Grounded Distribution System with CD Type Superconducting Cable

22.9kV 중성점 다중접지계통에 CD형 초전도케이블을 적용한 경우의 지락전류변화

  • 이종배 ((주)그린넷파워 엔지니어링팀) ;
  • 황시돌 (한전전력연구원) ;
  • 손송호 (한전전력연구원) ;
  • 이근준 (충북과학대학 전기에너지시스템학과)
  • Published : 2007.06.01

Abstract

This paper discusses the effects of CD type superconducting cable operation in 22.9kV multi neutral grounded distribution system during L-G fault and counterplans to power system protection. In case of using the 3-phase CD-type superconducting cable, the inductance of superconducting cable system would be decreased due to the current of shield part of superconducting cable, which is opposite direction and nearly equal value with respect to main superconductor. However, when the shield circuit system is operated in shorted state, shield current decreases faulted ground current and give effects to power system protection scheme. This study examines the phenomena of single line to ground fault case in above mentioned system using the EMTDC program and discusses the right operation method of superconducting shield.

Keywords

References

  1. '초전도 케이블의 전력계통 적용 기반 기술 연구', 중간 보고서 산업자원부, 전력연구원 2004.9
  2. John Jipping et. el., 'The Impact of HTS cables on Power Flow Distribution and Short-circuit Currents within a meshed network', IEEE SM 2001 pp.736-741 https://doi.org/10.1109/TDC.2001.971329
  3. PSCAD manual Ver. 4.1 2006
  4. S. honjo, K. Matsuo, T. Mimura, Y. Takahashi. 'High- Tc superconducting power cable development', Physica C 1234-1240, 2001 https://doi.org/10.1016/S0921-4534(01)00501-9
  5. R. Weshe, A. Anghel, B. Jakob, G. Pasztor, R Schindler and G. Vecsey, 'Design of superconducting power cables', Cryogenics 39, pp. 767-775, 1999 https://doi.org/10.1016/S0011-2275(99)00098-3
  6. Y. B. Lin, L. Z. Lin, Z. Y. Gao, H. M. Wen, L. Xu, L. Shu, J. Li, L. Y. Xiao, L. Zhou and G. S. Yuan, 'Development of HTS transmission power cable', IEEE Trans. on Applied Superconductivity, Vol. 11, No. 1. pp. 2371-2374, 2001 https://doi.org/10.1109/77.920338
  7. G. Coletta, F. Zanovello, D. Uglietti, R. Tebano and R. Mele, 'Current density distribution in BSCCO-2223 tapes in overload conditions', IEEE Trans. on Applied Superconductivity, Vol. 11, No. 1, pp. 2749-2752, 2001 https://doi.org/10.1109/77.919632
  8. K. Hayashi, T. Hikata, T. Kaneko, M. Ueyama, A. Mikumo, M. Ayai, S. Kobayashi, H. Takei and K. sato, 'Development of Ag-Sheathed Bi2223 superconducting wires and their application'. IEEE Trans. on Applied Superconductivity, Vol. 11. No. 1, pp. 3281-3284, 2001 https://doi.org/10.1109/77.919763
  9. L. Uasur, D. Parker, M. Tanner, E. Podtburg, D. Bucz다, J. Scudiere, P. Caracino, S. Spreafico, P. Corsaro and M. Nassi, 'Long length manufacturing of high performance BSCCO-2223 tape for the Detroit Edison power cable project', IEEE Trans. on Applied Superconductivity, Vol. 11. No. 1. pp. 3256-3260, 2001 https://doi.org/10.1109/77.919757
  10. T. Hemmi, A. Ninomiya, T. Ishigohka, K. Kurahashi, K. Arai, J. Yamaguchi, M. Umeda and K. Kaiho. 'Transient behavior of Bi2223/Ag HTS tape for sharp rising current', IEEE Trans. on Applied Superconductivity, Vol. 12, No.1, pp. 1422-1425, 2002 https://doi.org/10.1109/TASC.2002.1018669
  11. A. P. Malozemoff, J Maguire, B. Gamble, and S. Kalsi, 'Power Applications of High-Temperature Superconductors : Status and Perspectives', IEEE Trans. on Applied Superconductivity, Vol. 12, No.1, pp. 778-781, 2002 https://doi.org/10.1109/TASC.2002.1018517
  12. J. Oestergaard, ' Superconducting power cables In Denmark-A case study', IEEE Trans on Applied Superconductivity, Vol. 7, No.2, pp. 719-722, 1997 https://doi.org/10.1109/77.614605