20078 18 ®xt5se| =2X X 44 F Cl H

=z 2007~-44CI1-1-7

H1z 49

ATE vlEolA A7t daels

(Score-Counting Algorithm for Computer Go)

=13
b}

kil

P
-

(Hyun Soo Park)

2

2 =2 AFEH uEdA AVt s 3
A7t dnelFo 2 olFojrt ARE F&
=
oM #& A3 FasHeAe
At
H449¢ A58

o,

e AUt AL B A=Y v F
%«1 HEE A Uy
g A7t FueFAME TME 2§ 94 TEHA ge
T2 J3r} 2719 FEE AYE A
el A 2k 866, 596 28l 4159 H A gk

9_|l:

Z0 =
HTE
T

of g A z2xn
HogHje) A, aels st i wEe AU
oz Aoy sMdwE e FuE A #A

3t Ad3lgloni 1 A3 CGoban, HandTalks

)

A AgE BEe dPE T FEH A Y3He

Abstract

This paper presents a method of score counting for computer Go that includes the consideration of stability,

management of dead stones, and an algorithm for score counting. Thus, method for managing dead stones, filling all
dames, and making additional moves is presented, along with a score-counting algorithm, where dames are defined as
empty points that are not included in the area of a group, while additional moves are required for life when filling all the
dames. In experiments using the final positions of 362 games, a mean error of 866, 596, and 415 was recorded for the
score counting produced by the CGoban, HandTalk, and proposed methods, respectively. The proposed method was

confirmed by experiments where it was success fully applied to the final positions.

Keywords :

I. Introduction
Previous research on artificial intelligence has
already included expert systems, written text and
voice recognition, intelligence games, robots, and
natural the

intelligence game Go provides one of the biggest

language processing. In particular,

challenges for artificial intelligence, as the problem
scope for Go is enormous at about 10'. The artificial
intelligence techniques related to computerized Go
' heuristic searches,

include evaluation functions,

machine learning, automatic knowledge generation,

“A3Y, AEARAY AEH AR &7
(Dept. of Computer Information Technology,
Kyungdong College of Techno-Information)
Aadab 200618 9926y, FASRY: 2007314119

(49)

score-counting algorithm, filling all dames, additional moves, final positions, computer Go

mathematical morphology, and cognitive science.
However, this paper suggests a score—counting
algorithm for computer Go in the case of games that
have been played to completion, yet still require all
the dames to be filled and additional moves.

D. Dyerm previously presented an algorithm for
score counting, and tested it using 2000 games.
However, the results only had 33% accuracy, where
only 75% had the correct score, while the other 25%
were usually off by 1 point due to a fine point in the
endgame play. Sometimes, territories were not really
final,

Nonetheless,

just determined in the eyes of the pros.
gross errors, where tsume go was
judged incorrectly and a wildly inaccurate score
calculated, were very rare. In Dyer’s algorithm, areas

50

are determined to be
zero—entropy move generator that has the objective
to fill all empty spaces, avoid capturing anything, and
avoid changing connectivity among groups. Dyer also

absolutely alive using a

uses 'a database of eye-shape’ outcomes to
determine which "big eyes” can actually make two.
Each not-absolutely-safe group is processed and
classified as alive or dead based on several heuristics
(such as "surrounded by a live group”) or by
invoking a problem solver to actually try to capture
it. All the dames, defined as empty areas adjacent to
live groups of both colors, are then filled, and the
final phase looks for this occurrence by running a
tsumego solver on all groups with few liberties.

Meanwhile, ECD. van der Werf™ presented a
learning system for scoring the final positions in a
game of Go. The system is taught to predict life and
death from labeled game records, as a result, 98.9%
of the positions are scored correctly, and nearly all
incorrectly scored positions are recognized without
any human intervention. By providing reliable score
information, the system provides a large source of Go
knowledge implicitly available from human game
records, thereby paving the way for the successful
application of machine learning for Go. In the
experiments, the game records were obtained from
the NNGS archive (NNGS, 2002), and all the games
were played on a 99 board between 1995 and 2002.
Detecting these games is important because most
machine-learning methods require reliable training
data for a good performance.

Martin Miller”® also devised an exchange method
attached to unconditional safety, developed chain
patterns, and extended the safety notion to the
chains. He also heuristically evaluated the whole Go
board using his program (EXPLORER). Miller's
research focused on stability through the use of static
rules and local searches in a game. His paper
describes three exact evaluation methods for safe
territories, capturing races using static rules, and
endgame areas based on the combinatorial game
in EXPLORER, plus a zone-based

heuristic position evaluation is explained. Zones are

theory used

HTE HESUAM A7t Y2l E

(50)

AE
ral
3

| Board l
ringProcessing (1> —v—

I Find all Strings and Compute all area of Grousz

v

[Create String Graph J
v _
[Judge Seki |
v_

l Check Articulation Points]

LEvaluate Strings by using String Graph Rules l

1
y

—4Himove Dead Strings | o

y
Fill all the dames |

Play Addition moves

Compute Score

-
L
|

=
Fig. 1.

Rotel

Suggested Block Diagram.

safe
threatened, or unused. Points outside the territories

classified as territory, potential territory,
are further classified into near points, junction points,
and far-away points. Each point in a safe territory
counts as +1 for Black or -1 for White towards the
total score. Meanwhile, each point in a potential
territory counts as +1/2.

Each near point is counted as +0.2. Junction points
and far-away points have a weight of zero, and do
not contribute to the score. Therefore, the final score
is the sum of the board score, plus the Komi
{handicap).

However, this article presents an algorithm for
score counting that includes string processing based
on a string graph, the removal of dead strings, filling
all the dames, and additional moves, as represented
by the block diagram in Fig. 1. In the remainder of
this paper, section 2 outlines the proposed algorithm
and provides details on the stﬁng processing, removal
of dead stones, filling all the dames, and additional
moves. Section 3 then demonstrates the effectiveness
of the proposed method through experiments and
analysis. Finally, section 4 summarizes the proposed
method, discusses some limitations, and suggests
directions for future studies in this field.

20074 18 XS =

II. Score counting

1. String Processing

In this paper, the purpose of the string processing
is to evaluate strings and compute all the group
areas. This includes finding all the strings, computing
all creating a string graph,
evaluating the strings according to the string graph

the group areas,

rules, determining the existence of Seki (stalemate),
and checking articulation points.

The stability of a string® is a numerical
representation of the status of the strings on the
board, ie. whether the stability is close to life or
death. Thus, to facilitate a static analysis[5], a string
graph (SG) is created, then the life and death of the
strings is judged according to specific rules. For
example, the Articulation Point Check (APC) rule
determines life and death according to the number of
junctions, while Seki rules are applied to check the
existence of Seki.

These steps are used after removing dead strings,
filling all the dames, and making additional moves.

2. Processing Dead Stones

In this paper, the life and death of all strings are
determined by string processing. The string and
group information is updated after processing the
dead stones, along with the stability of the strings
Strings with a
KJ-stability will be captured, so they are removed
from the board. The captured stones are calculated
then the string and group
information is updated again. Strings with stability of
more than KI are also judged as dead and removed
from the board. The captured stones are then
calculated using the same method, and the string and
group information updated again.
arise when Atari

neighbor each other. Thus, a method for processing

and territory of the groups.

by score counting,

However, problems stones
dead stones is proposed. The number of neighboring
Atari stones is used to determine life or death. If the
number of Atari stones is equal for both players,

both are always judged dead. If one player has one

(6D

51

?—L-

ey

4

BA

1

agl 2 F2 (M3 e MZE)EQ of
Fig. 2. Examples of dead stones, where while and
black triangles represent dead stones.
1 1
&
i .
6 B
%/_
ol 3 #AMEIL o
Fig. 3. Example of board evaluation.

stone and the other player has more than two stones,
the latter is judged dead. The remaining neighboring
Atari are also judged dead. In Fig.2, the dead stones
are marked with white and black triangles.

The result of updating the string and group
information is that the strings with a stahility of
more than KI are captured and calculated. Therefore,
the black and white territory and captured stones are
used to score the game.

In fig. 3, the stones marked by a triangle are dead,
the numbers on the stones represent a group, and the
numbers on the board represent the territory of the
group. When the game in Figure 3 was evaluated by
a professional player, the white area was 555 40 on
the left side, 10 in the top-right corner, and 55 Komi,
while the black area was 41: 6 in the top-left corner,
15 on the right side, and 20 in the bottom-right
corner, meaning that white won by 14. Figure 3 then
shows the result of a static analysis of the game
when using the proposed method, where the white
area was 455 31 on the left side, 9 in the top-right
corner, and 55 Komi, while the black area was 30: 8
in the top-left corner, 16 in the bottom-right corner,
and 6 on the right side, meaning that white won by

52

155. The difference between the two methods was
related to the influence of the left side and top-right
comer, which were regarded as territory by the
professional player, yet not by the proposed method.

3. Dames and Additional moves

Counting the score in Go requires filling all dames
and additional moves. Dames that are identified by
searching area of group are not territory within a
group. Thus, in the end game, each color places a
stone alternately on an empty intersection in all the
dames, and the additional move that occur when
filling all the dames are not included as territory. Fig.
4 (a) shows a game where the dead strings need to
be removed and the dames need to be filled,
including additional moves. In Fig. 4 (b), the proposed
method has identified all the dames on board, as
marked by a black square.

Furthermore, some strings need additional moves
to live, as they can Atari based on filling all the

dames. Therefore , the additional moves are not

o=
og
{a) Game, (b) all dames, as marked by black
squares, and (c) additional moves, as marked
by square on stones.

A

HFE HF0M A2t d02F

(52)

1z
ra
+

included as territory, even if they were included as
territory before the step. In fig. 4 (c), the proposed
method has filled all the dames, including additional
moves, as marked by a square on the stones.

4. Score—counting algorithm

The proposed method counts the score using a
score procedure, where the input is the BoardPoint
and the Komi. The score procedure consists of
StringProcess and RemoveDeadString. As a result,
the score counting calculates the territory of black
and white, the Komi, captured stones, and dead

stones.

/* Procedure: StringProcess() */

1. Begin

2. Evaluate the stability of S; //S is a String
3. Call EvaluationUsingSG;

4. End

The StringProcess procedure evaluates the stability
of the strings by classifying and evaluating the
called the
EvaluationUsingSG procedure, which classifies the
string stability. The stability is not changed if the
string stability is evaluated as Completely Alive (C).

Meanwhile, the
processes the dead strings on the board. If a string is
Seki, it 1s alive. When the dead string is black, the
removed_black value is calculated by adding the
number of dead Dblack stones, while the
removed_white value is calculated by adding the
number of dead white stones.

strings wusing a string graph[S],

RemoveDeadString procedure

/* Procedure: RemoveDeadString () */

1. Begin

2. if S is Seki then return; /5 is a String.
3. Insert S to DeadString; //DeadString has the mumber of Strings.
4. Remove S on Board;

5. 1if color of S is black then
6 removed_black = removed_black + n(S);
7. else

8 removed_white = removed_white + n(S);
9. End

As such, the score procedure processes the position

20074 18 ©A3=E =2X A 44 A Cl H

and captured stone information on the board, where
the StringProcess procedure evaluates the stability of
the strings and completely alive strings using a
string graph, then the strings are processed by the
RemoveDeadString procedure if their stability is
between KK and KB. Finally, all strings are
re—evaluated by the StringProcess procedure.

/* Procedure: Score () */

Begin

. Call StringProcess;

. Remove strings that have extremely lower stability;
Call RemoveDeadString;

Call StringProcess;

Find area of Groups;

Call FillUpDames;

Call StringProcess;

Call MoveAdditionMoves;

10. Call StringProcess;

11. Compute score, white_score, and black_score;
12. End

1
2
3
4
5.
6
7
8
0.

The territory of a group is calculated based on the
Thereafter,
number

evaluation of its strings. the score
the calculated

territories, number of captured stones, and number of

counting processes of

removed stones with a dead status.

II. Experiment

An experiment to evaluate the proposed score
counting method was conducted using the BGA's
collection at http://www.britgo.org/gopcres/goperes].html.

Although 833 problems by amateur Go players are
included, faults were detected in some games, so the
test data actually included 362 games.

Table 1 shows a comparison between the proposed
method and other programs. The mean error for the
proposed method was only 4.15, while the mean error
for the CGoban and HandTalk methods was 866 and
5.9, confirming that the proposed
method was very effective.

In Table 2, when the difference between the
correct score and the score produced by each method
was 0, CGoban produced 170, representing 47%,

respectively,

(63)

=2

A1

53

E 1. HotE diHal cfE =2 g87tol dil
Table 1. Comparison of proposed method and other
program.
Proposed
Items CGoban HandTalk
Method
Mean
415 8.66 59
Error
Variance 1104 422 1187
Standard 105 205 109
Deviation
F 2 A" ZD Diffs MES Avidalet clekst o
HES AHJIEE Zte| Xfo|, N2 hit® i,
AT hit &8 7i%
Table 2. Experimental results. Diff is the difference

between the correct score and the scores
produced by the various methods, N is the
number of hits, A is the aggregate number of

hits.
Dt Proposed method CGoban HandTalk
N | A % N | A % N | A %
0 (134134 37 (170170 47 | 81 | 81 | 224
051 2 | 136} 376 2 172] 475 1| 8| 227
1 (1072431 671 1 8 |252| 696 | 80 | 162 | 448
15 0 [243] 671 0 | 252 | 696 0 |162 | 448
2 146 |289) 798 | 26 | 278 768 | 64 | 226 | 624
251 1 [290] 8.1 1 1219)| 71 1 1227 627
3 |17 1307] 848 |12 | 291 84 | 30 [B7| 71
35| 0 |307]| 848 | 0 {291} 84 | 1 |258| 713
4 4 1311 89 2 12931 89 | 10 {268 T4
451 0 311 &9 0 293 809 0 |268] 74
5 3 |34 87 2 |29 | 815 9 (277 765
551 0 |314] 87 | 0 [2%| 85 | 0 |277| 765
6 | 5 |39 &1 | 3 [298| 83 | 5 |282| 779
65| 0 {319] 81 0 | 2981 823 0 | 2821 7719
7 4 1323 | 8.2 1 129 | 826 3 |28 787
751 0 (323 82 | 0 [299] 86 | 0 (28| 787
8 2 [325] 898 2 1301 81 4 | 28| 798
851 0 |35 88 | 0 |301] 81 | 0 [289] 798
9 1 1326] 901 1 {302 834 5 |24 812
95] 0 [326] N1 1]303] 87 0 |24 812
0] 3 1329 99 1 134 & 1 |12% | 815
105 0 |329) 909 | 0 |304| &4 0 |295| 815
11| 3 |32 917 | 1 |305] 843 | 3 {298 83
1151 0 |332 917 0 |35 843 0 | 298| 83
Row 30 {362 100 | 57 {362] 100 | 64 | 362 | 100
Total| 362 362 362

54

HandTalk produced 81, representing 22.4%, and the
proposed method produced 134, representing 37%.
When the difference between the correct score and
the score produced by each method was 2 or less,
CGoban produced 278, representing 76.8%, HandTalk
produced 226, representing 62.4%, and the proposed
method produced 289, representing 79.8%.

Although CGoban was better than the proposed
method on correctness, the proposed method was
superior when the aggregation of the difference
between the correct score and the score produced by
each method was 2 or less. Furthermore, when the
difference between the correct score and the score
produced by each method was 12 or over, CGoban
produced 57, representing 15.7%, HandTalk produced
64, representing 17.7%, and the proposed method
produced 30, representing 8.3%, thereby confirming
the effectiveness of the proposed method.

The main problem of the proposed method is
related to its reading strategies, which currently do
not include strings broken by the enemy, unended
gang fights, a stone supplement, and oi-otoshi. Thus,
the proposed method is best used in the last stages
of a game. However, it can also be used to minimize
the depth of exploration when a localized judgment of
life or death is made by an evaluation function.

As the proposed method is essentially a static
evaluation, a search—based algorithm is still required
for a few problems, such as an open-Ko, the
reinforcement of one point, and a thrust.

IV. Conclusion

This paper proposed a method of score counting
that considers stability, the management dead stones,
filling all dames, In
experiments using the final positions of 362 games,
the mean error for the CGoban, HandTalk, and
866, 596, and 415,

and additional moves.

proposed methods was
respectively.

In the case of neighboring Atari stones, their
number is used to decide whether they are alive or

dead. If the number of Atari stones is equal on both

HFTE BS0M ATt L2 F

(54)

JE
el
S

sides , both are always judged dead. If one side has
one Atari stone and the other side has more than
two, the latter is judged dead. The remaining
neighboring Atari are also judged dead.

In addition, a method is presented for filling all
dames and making additional moves, where dames
are defined as empty points that cannot be included
within the territory of a group, while some strings
require additional moves to live, as they can Atari
based on filling all the dames.

Score counting experiments were conducted using
the BGA'’s collection. Although the problems included
883 games by amateur Go players, some faulfs were
detected, therefore, the test data only included 362
games with completed scores.

The main limitation of the proposed method is
related to its reading strategies, which currently do
not include strings broken by the enemy, unended
gang fights, a stone supplement, and oi-otoshi.

References

[1] http://www.andromeda.com/people/ddyer/go
/scoring-games.html.

JWHM. Uiterwijk E.CD. Vander Werf, H.].
van den Herik, "Leaming to score final positions
in game of Go,” 10th Advances in Computer
Games conference, pp. 143-158 2003

M. Muller, “Counting the score: Position
evaluation in computer Go.” ICGA Journal,
25(4): pp. 219-228, 2002.

H. S. Park, D. H Lee, H. J. Kim, ”"Static
Analysis of String Stability and Group Territory
in Computer Go,” Journal of the Institute of
Electronics Engineers of Korea, Vol. 40CI, no.,
pp. 77-86, Nov 2003.

H. S. Park, K. W. Kang, "Evaluation of Strings
in Computer Go Using Articulation Points check
and Seki judgment,” Lecture Notes on Artificial
Intelligence (LNAI 3809), Springer-Verlag,
Berlin Heidelberg, pp. 197-206 2005.

(2]

(3]

(4]

(5]

20079 18 MASEHE =2X M4 HCIEH A1 E

a8 (35 4)
1992 A4S E AAHEA S

SEA!
199659 AR ostn @A
284}
2005\ 29 AEUSE AFHT
: st} wa},
19979~ 8 A AEARE AFEHARI S
M A}

<FBARE: AFAS, ARG 0E, AYolE>

(55)

55

