DOI QR코드

DOI QR Code

AAW-based Cell Image Segmentation Method

적응적 관심윈도우 기반의 세포영상 분할 기법

  • Published : 2007.04.30

Abstract

In this paper, we present an AAW(Adaptive Attention Window) based cell image segmentation method. For semantic AAW detection we create an initial Attention Window by using a luminance map. Then the initial AW is reduced to the optimal size of the real ROI(Region of Interest) by using a quad tree segmentation. The purpose of AAW is to remove the background and to reduce the amount of processing time for segmenting ROIs. Experimental results show that the proposed method segments one or more ROIs efficiently and gives the similar segmentation result as compared with the human perception.

본 논문에서는 적응적 관심영역(AAW: Adaptive Attention Window)에 기반한 세포영상 분할 기법을 제안한다. 적응적 관심영역은 분할하기 위해, 명암지도를 이용하여 초기 관심윈도우(IAW: Initial AW)를 생성한다. 생성된 초기 관심윈도우는 쿼드-트리 분할을 이용하여 실제의 관심영역(ROI: Region of Interest)과 유사한 크기가 될 때까지 축소된다. 이렇게 생성된 적응적 관심윈도우는 세포 영상에서 배경을 제거하고 관심영역 추출의 처리 시간을 줄이기 위해서 사용된다. 마지막으로 적응적 관심영역 안에서 영역을 분할하고, 관심영역만을 분리하기 위한 영역 병합과 제거를 수행한다. 실험에서 제안된 기법은 세포영상의 관심영역을 효과적으로 분리하여 인간 시각과 유사한 향상된 영상 분할 결과를 보여준다.

Keywords

References

  1. Choi H-K, Hwang H-G, Kim M K and Kim T Y: 'Design of the breast carcinoma cell bank system,' Enterprise Networking and Computing in Healthcare Industry, pp.88-99, 2004
  2. Wong K-M, Cheung K W and Po L M. 'MIRROR: an interactive content based image retrieval system,' IEEE Int. Conf. on Circuits and Systems, Vol.2, pp.1541-1544, 2005 https://doi.org/10.1109/ISCAS.2005.1464894
  3. Kuo P-J and Aoki, T., H. 'PARIS: A Personal Archiving and Retrieving Image System,' Information and Telecommunication Technologies, pp.122-125, 2005
  4. D. Comaniciu and P. Meer, 'Mean Shift : A Robust Approach Toward Feature Space Analysis,' IEEE Trans. on Pattern Recognition and Machine Intelligence, Vol.24, pp.603-619, 2000 https://doi.org/10.1109/34.1000236
  5. D. Comaniciu, D. Foran and P. Meer, 'Shape Based Image Indexing and Retrieval for Diagnostic Pathology Images,' Int. Conf. on Pattern Recognition, Brisbane, Australia, pp.902-904, 1998 https://doi.org/10.1109/ICPR.1998.711297
  6. D. Comaniciu, P. Meer, D. Foran and A. Medl, 'Bimodal System for Interactive Indexing and Retrieval of Pathology Images,' IEEE Workshop on Application of Comp. Vis., Princeton, New Jersey, pp.76-81, 1998 https://doi.org/10.1109/ACV.1998.732861
  7. S. -O. Ropers, A. A. Bell, T. Wurflinger, A. Bocking and D. Meyer-Ebrecht, 'Automatic scene comparison and matching in multimodal cytopathological microscopic images,' IEEE, Image Processing, Vol. 1, pp.1145-1148, 2005 https://doi.org/10.1109/ICIP.2005.1529958
  8. W. Barhoumi, E. Zagrouba, 'Towards a Standard Approach for Medical Image Segmentation,' ACS/IEEE. Int. Conf. Computer Systems and Applications, pp.130, 2005 https://doi.org/10.1109/AICCSA.2005.1387119
  9. M. Tscherepanow, F. Zollner and F. Kummert, 'Classification of segmented regions in brightfield microscope images,' IEEE, Int. Conf. on Pattern Recognition, Vol. 3, pp.972-975, 2006 https://doi.org/10.1109/ICPR.2006.369
  10. SooYeong Kwak, ByoungChul Ko and Hyeran Byun, 'Automatic Salient object Extraction using the Contrast Map and Salient Points,' Lecture Notes in Computer Science, Vol. 3332, pp.138-147, 2004
  11. Anil K. Jain, Fundamental of digital image processing, Practice Hall, International Edition,1989
  12. L. Itti, C. Koach and E. Niebur, 'A model of saliency based visual attention for rapid scene analysis,' IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 20, No.11, pp.1254-1259, 1998 https://doi.org/10.1109/34.730558
  13. B. C. Ko and H. Byun, 'Frip: A region-based image retrieval tool using automatic image segmentation and stepwise boolean and matching,' IEEE Trans. on Multimedia, Vol. 7, No. 1, pp.105-113, 2005 https://doi.org/10.1109/TMM.2004.840603

Cited by

  1. Segmentation Method of Overlapped nuclei in FISH Image vol.16B, pp.2, 2009, https://doi.org/10.3745/KIPSTB.2009.16-B.2.131