Abstract
This paper presents a global localization method using circular correlation of an omni-directional image. The localization of a mobile robot, especially in indoor conditions, is a key component in the development of useful service robots. Though stereo vision is widely used for localization, its performance is limited due to computational complexity and its narrow view angle. To compensate for these shortcomings, we utilize a single omni-directional camera which can capture instantaneous $360^{\circ}$ panoramic images around a robot. Nodes around a robot are extracted by the correlation coefficients of CHL (Circular Horizontal Line) between the landmark and the current captured image. After finding possible near nodes, the robot moves to the nearest node based on the correlation values and the positions of these nodes. To accelerate computation, correlation values are calculated based on Fast Fourier Transforms. Experimental results and performance in a real home environment have shown the feasibility of the method.